AYJR 2025 (January) – Evening Shift

MathonGo

Questions with Answer Keys & Solutions

Q1 mathongo										
The resistance of a wire will be	wire	is 20 Ω . It is str	etche	ed, so that the le	ength	becomes three	time	s, then the new	resis	tance of the
(1) 200Ω										
(2) 160Ω thongo										
(3) 120Ω thongo										
(4) 180Ω										
Q2 mathongo										
A standing wave in $y(x,t) = y_0 \sin[(2\pi)$ Based on above infe	r/L):	$x]\sin[(2\pi/{ m T})t]$	$+\pi/$	[4]						
(1) The pipe is close	ed at	both ends								
(2) The wavelength		ne wave could b								
(3) There could be a										
(4) The frequency of	of the	fundamental n	node	of vibrations is	137.	5 Hz				
Q3 300 cc of a gas at what is final pressu	the a	atmospheric pr	essur	e of 10^6 dyne	cm^{-}		sed to	o 150 cc. If the	e cha	nge is sudden
(1) 1×10^6 dyne of	$ m cm^{-2}$									
(2) 2.0×10^6 dyne mathon	e cm	-2 mathongo								
(3) 2.6×10^{6} dyne (4) 3.0×10^{6} dyne	cm [*]	-2 mathongo -2								

There are two identical small holes of area of cross-section A on the opposite sides of a tank containing a liquid of density ρ . The difference in height between the holes is h. Tank is resting on a smooth horizontal surface, horizontal

AYJR 2025 (Janu	ary) – Evening Sl	hift mathonao	Are You	JEE Ready (AYJR)
Questions with A	nswer Keys & So	olutions		MathonGo
	be applied on the tan			
77. mathongo	7%. mathongo			
//. mathongo	h /// mathongo			
///. mathongo	7// mathor			
//. mathongo	//. mathongo			
(2) $2gh/\rho A$ (3) $2\rho gh A$				
25 mathongo				
	d Z in the given logi			
2 mathongo	The main and the second	wathongo		
2 mathon	mathonge	z mathongo		
		//. mathongo		
(1) $Y = 1, Z = 1$				
(2) $Y = 0, Z = 1$				
(3) $Y = 1, Z = 0$				
(4) $Y = 0, Z = 0$				
Q6 mathongo				

Four holes of radius R are cut from a thin square plate of side 4R and mass M. The moment of inertia of the remaining portion about z-axis is

AYJR 2025 (January) – Evening Shift			Are Yo	u JE	E Ready (AYJR)
Questions with Answer Keys & Solution					MathonGo
##mathongo######mathongo####mathongo##					
// marongo inthone ///					
	mathongo				
	• ≯ r X athongo				
// malongo // nathong/ //					
//. mathongo ///. mathongo ///.					
(1) $\frac{\pi}{12}$ MR ² mathematical ///					
(2) $\left(\frac{4}{3}-\frac{\pi}{4}\right)$ MR ² mathematical ///					
(3) $\left(\frac{8}{3} - \frac{10\pi}{16}\right)$ MR ² mathematical ///					
(4) $\left(\frac{4}{3} - \frac{\pi}{6}\right)$ MR ² mathematical ///					
Q7 mathongo /// mathongo ///					

The figures shows the variation of photocurrent i with anode potential V for three different radiations. Let I_a , I_b and I_c be the intensities and f_a , f_b and f_c be the frequencies for the curves a, b and c respectively. Then

11. mathongo 11. mathongo 11. n	nathongo 📶		
🥂 mathongo 🕜 mythongo 📶 n			
/// mathongo ///byathongo /// n	nathongo ///		
// mathong /// ng alongo /// n	nathongo ///		
(1) $f_a = f_b$ and $I_a \neq I_b$ mathematical functions of I_a	nathongo 🥂		
(2) $f_a = f_c$ and $I_a = I_c$ mathematical mathmatical mathematical mathematical mathematical mathematical			

- (3) $f_a = f_b$ and $I_a = I_b$
- (4) $f_b = f_c$ and $I_b = I_c$

	erreiterige	in decenerge.	in a children ge	5° C, the temperature of the mixture
will be	w if 100 g of liquid	A at 100 C is added	to 50 g of liquid B at	50°C, temperature of the mixture
(2) 60°C				
(3) 70°C hongo				
(4) 85°C thongo				
Q9 mathongo				
The magnitude of t	he magnetic field at	t O (centre of the circ	cular part) due to the c	urrent-carrying coil as shown is:
///. math ronge	in thongo			
//. mathongo	/// mothongo			
	/// mathongo			
	/// mathongo			
11. mathongo				
(1) $\frac{\mu_0 i}{4\pi} \left(\frac{4\pi}{a} + \frac{\sqrt{2}}{b} \right)$				
(2) $\frac{\mu_0 i}{4\pi} \left(\frac{3\pi}{2a} + \frac{\sqrt{2}}{b} \right)$				
$(3) \ \frac{\mu_0 i}{2\pi} \left(\frac{\pi}{3a} + \frac{3}{\sqrt{2}b} \right)$	/// mathongo			
(4) $\frac{\mu_0 i}{4\pi} \left(\frac{3\pi}{a} + \frac{\sqrt{2}}{b} \right)$				
				/// mathongo /// mathongo
A real inverted ima			graph (u, v, f are coor	mathongo /// mathongo

AYJR 2025 (January) – Evening Shift Are You JEE Ready (AYJR)

Questions with Answer Keys & Solutions A liquid A of mass 100 g at 100 °C is added to 50 g of a liquid B at temperature 75 °C, the temperature of the mixture

MathonGo

AYJR 2025 (January) – Evening	Shift mathongo	Are You JEE Ready (AYJ	R)
Questions with Answer Keys &		Mathon	
mathongy/f /// mathong mathong			
/// mathong +1 → u/f			
1.1.1			
(1) mathongo /// mathongo			
///. mathongov/f /// mathongo			
/// -1 →u/fing			
(2) mathongo /// mathongo			
/// mathong → u/f			
//. mathongo //. mathongo			
(3) mathongo /// mathongo			
//. mathong y/f //. mathong			
+1			
(4)			
Q11			

Aatch the electrom		r Keys & Sc radiations gi	ven in List -I with	their u	uses given in Li	st - I	I.		Mathon
List - I thongo	n	List - II	mathongo						
A) X-rays	P)	Remote s	witches						
B) UV-rays	Q)	Finger pr Labs	ints in forensic						
C) Radio waves	R)	Crystal st	ructure study						
D) IR - rays	S)	TV comn system.	nunication						
1) $\mathbf{A} \to \mathbf{Q}, \mathbf{B} \to \mathbf{R}$	$,\mathrm{C} ightarrow$	$\mathrm{P},\mathrm{D} ightarrow\mathrm{S}$							
$2) \mathbf{A} \to \mathbf{R}, \mathbf{B} \to \mathbf{Q}$	$\mathrm{C},\mathrm{C} ightarrow$	$\mathrm{S},\mathrm{D} ightarrow\mathrm{P}$							
3) $\mathbf{A} \rightarrow \mathbf{R}, \mathbf{B} \rightarrow \mathbf{S},$									
4) $A \rightarrow S, B \rightarrow R$, mathongo		• /							
12 mathongo									
			ential energy $U =$ will be (x is in met				ng X -axis. The	e part	icle is releas
I) 5 m thongo									
1) 5 m thongo 2) $3m_{athongo}$									
2) $3m_{athongo}$									
2) 3 <i>m</i> 3) 7 m 4) 9 m									
2) 3 <i>m</i> 3) 7 m 4) 9 m									
 2) 3m 3) 7 m 4) 9 m 9 13 1 a double-slit expension 	/// n /// n /// n /// n	nathongo nathongo nathongo t, the distance							mathong mathong mathong screen is
2) 3 <i>m</i> 3) 7 m 4) 9 m 13 mathongo	/// n /// n /// n erimen nge wic	athongo athongo athongo t, the distance		iii. iii. crease	mathongo mathongo mathongo ed 10 times, wh	///. ///. ereas	mathongo mathongo mathongo s their distance	111. 111. 111. from	mathong mathong mathong screen is
 2) 3<i>m</i> 3) 7 m 4) 9 m 213 a double-slit expension of the fringer state of the fringer stat	/// n /// n /// n erimen nge wic	nathongo nathongo nathongo t, the distance Ith	 /// mathongo /// mathongo /// mathongo /// mathongo e between slits is in 	///. ///. crease	mathongo mathongo mathongo ed 10 times, wh	///. ///. ereas	mathongo mathongo s their distance mathongo	111. 111. 111. from	mathong mathong mathong screen is mathong

Questions with A In the circuit showr					= 0	The charge wi	nich r	asses through	the b	MathonGo attery in one
time constant is	///.	mathongo		mathongo		mathongo	-	-		
2 mdLhongo	R	methongo								
// mathongo		methongo								
// mehongo	s	mathongo								
(1) $\frac{eR^2E}{L}$										
(2) $\frac{EL}{R}$ athongo										
(3) $\frac{EL}{eR^2}$ othongo										
(4) $\frac{eL}{ER}$ athongo										
Q15										
Block ' A ' is hangi	ng fr	com a vertical s	pring	and is at rest. E	Block	B' strikes th	e blo	ck ' A ' with ve	elocit	y'v'and
sticks to it. Then th	e val	ue of ' v ' for w	hich	the spring just a	attair	is natural lengtl	n is -			
// moreongo										
// k.Oomoo										
/// mathongo										
m A										
///. mathongo										
v m B										
(1) $1 \frac{60 \text{mg}^2}{1}$										

- (3) $\sqrt{\frac{10 \operatorname{mg}^2}{k}}$
- (4) None of these

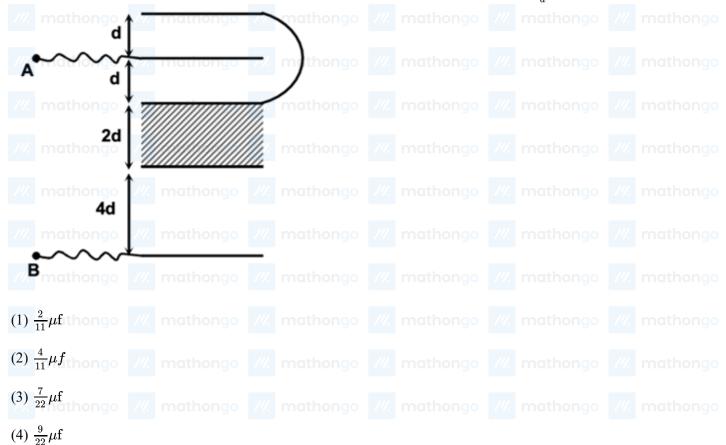
AYJR 2025 (Janu	ary)	– Evening SI	nift					Are Yo	u JE	E Ready (AYJR)
Questions with A	Questions with Answer Keys & Solutions									MathonGo
Q16 mathongo										
A ball rolls off the t	ton o	mathongo f stair-way with	a ho	mathongo prizontal velocit	tv of	mathongo magnitude 1.8	m s [_]	mothongo ¹ The steps are		mathongo m high and
0.20 m wide. Which	•	-				e	///.	mathongo	///.	
		p								
(1) First										
(2) Second										
(3) Third mathongo										
(4) Fourth										
Q17 mathongo										

The distance moved by the screw of a screw gauge is 2 mm in four rotations and there are 50 divisions on its cap. When nothing is put between its jaws, 30th division of circular scale coincides with the reference line, with zero of circular scale lying above the reference line. When a plate is placed between the jaws, the main scale reads 2 divisions and the circular scale reads 20 divisions. The thickness of the plate is

(1) 1.5 mm ongo					
(2) 1.2 mm					
(3) 1.4 mm mathongo					
(4) 1.6 mm mathongo					
Q18 mathongo					

An inclined plane making an angle 30° with the horizontal is placed in a uniform horizontal electric field of 100Vm^{-1} as shown in the figure. A small block of mass 1kg and charge, 0.01C is allowed to slide down from rest from a height, h = 1 m. If the coefficient of friction is 0.2, then the acceleration of the block is nearly, (Acceleration due to gravity, $g = 10 \text{ ms}^{-2}$)

/// mathongo /// mathemigo		
<u>/E=100 Vm⁻¹oo</u> mathongo		
11. mathongo 11. h mathongo		


- (1) 1.4 ms^{-2}
- (2) 2.4 ms^{-2}
- (3) 3.4 ms^{-2}

AYJR 2025 (January) – Evening Shift					Are Yo	ou JE	E Ready (AYJR)
	Answer Keys & So	olutions					MathonGo
(4) 4.4 ms^{-2}							
Q19 mathongo							

A gas mixture consists of 2 moles of oxygen and 4 moles of argon at temperature T. Neglecting all vibrational modes we calculated the total internal energy of the system to be xRT. What is the value of x?

In the arrangement shown, a dielectric slab of dielectric constant k = 2 is completely filled in the shaded region. All the plates have same area S. Find the equivalent capacitance between A and B. (Given $\frac{\varepsilon_0 S}{d} = 1 \mu F$)

AYJR 2025 (January) – Evening Shift and honor and honor and honor Are You JEE Ready (AYJR)

Q22

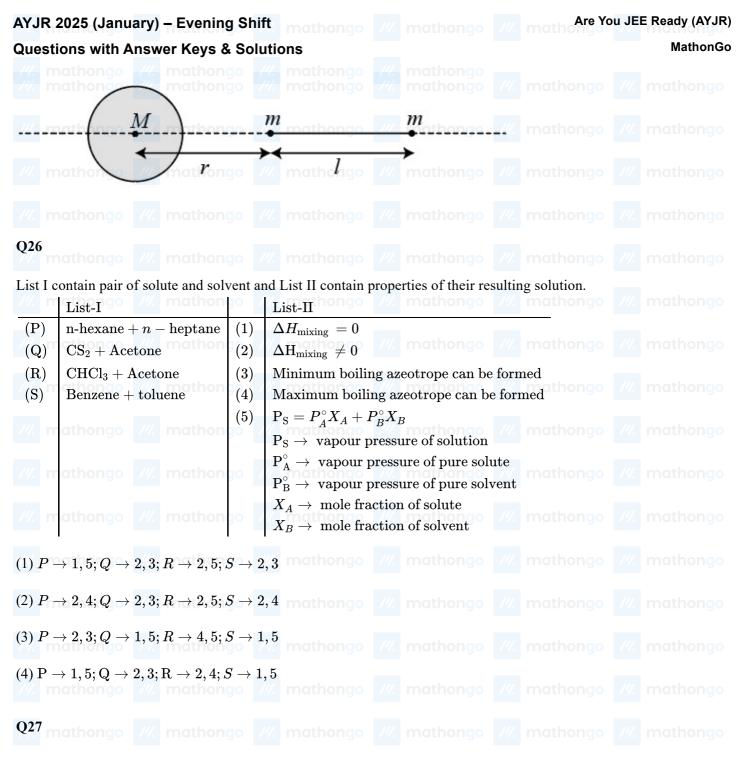
025

Questions with Answer Keys & Solutions

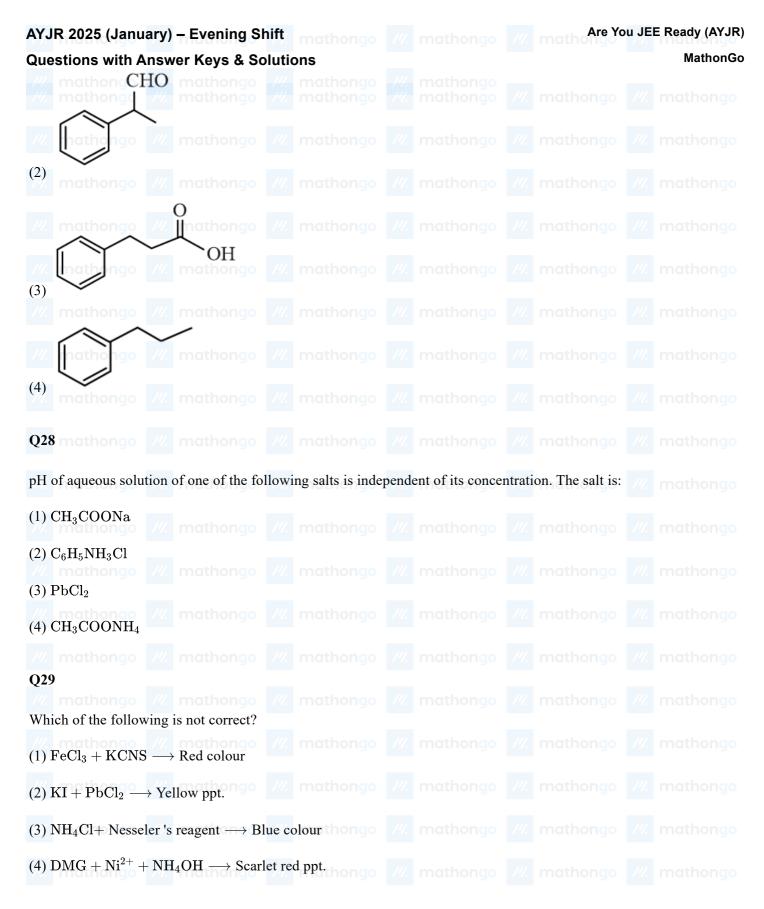
An unknown resistance R_1 is connected in series with a resistance of 10 Ω . This combination is connected to one gap of the meter bridge while a resistance R_2 is connected in the other gap. The balance point is at 50 cm, Now, when the 10 Ω resistance is removed the balance point shifts to 40 cm. The value of R_1 (in ohm) is

A hydrogen-like atom (atomic number Z) is in a higher excited state of quantum number n. This excited atom can make a transition to the first excited state by successively emitting two photons of energies 10.20 eV and 17.00 eV respectively. Alternatively, the atom from the same excited state can make a transition to the second excited state by successively emitting two photons of energy 4.25 eV and 5.95 eV respectively. Determine the value of Z. [Ionization energy of hydrogen atom = 13.6 eV

Q23 mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo

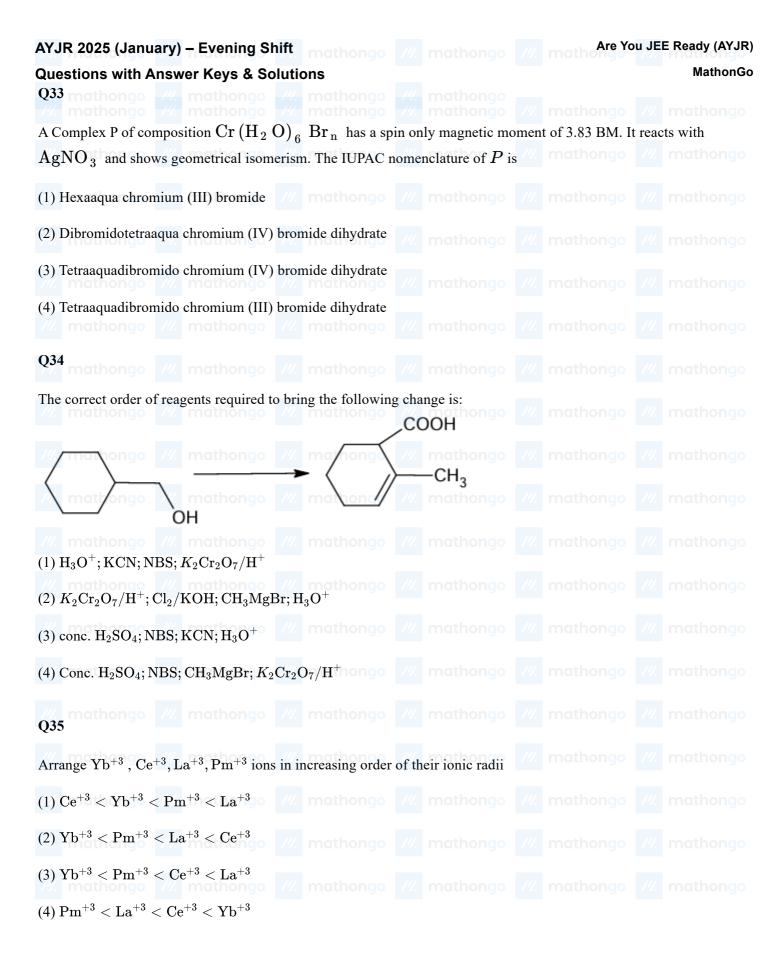

A non-conducting rod of length L with linear charge density $\lambda = \lambda_0 x$ where x is the distance from end A is rotating with constant angular speed ω about the same end. If the angular velocity of the rod (ω) is large, then the magnetic dipole moment of the system is $\frac{\omega \lambda_0 L^4}{n}$. What is the value of n? mothon with with mothon with mothon with mothon wit

Two persons A and B are located in X - Y plane at the points (0, 0) and (0, 10) respectively. (The distances are measured in MKS unit). At a time t = 0, they start moving simultaneously with velocities $\vec{v}_A = 2j \text{ms}^{-1}$ and $\vec{\mathbf{v}}_B = 2\hat{i}$ ms⁻¹ respectively. The time after which A and B are at their closest distance is t sec, find 2t.


A large sphere of mass M is fixed at one position and two identical particles each of mass m are kept on a line passing through the centre of M (see figure). The point masses are connected by a rigid massless rod of length l and this assembly is free to move along the line connecting them. All three masses interact only through their mutual gravitational interaction. When the point mass nearer to M is at a distance r = 31 from M, the tension in the rod is zero for $m = k \left(\frac{M}{288} \right)$. The value of k is

MathonGo

In the presence of peroxide, styrene reacts with HBr to give X. When X reacted with magnesium in dry ether followed by CO_2 and hydrolysis gave Y. Treatment of Y with PCl_5 and then next with H_2 , $Pd - BaSO_4$ gave Z. What is Z?




 He^+ ions in its ground state are irradiated with photons of energy 67.15eV. Electrons ejected from He^+ strikes the H-atom in its ground state. Give the maximum number of spectral lines which can be obtained from de-excitation of H-atoms.

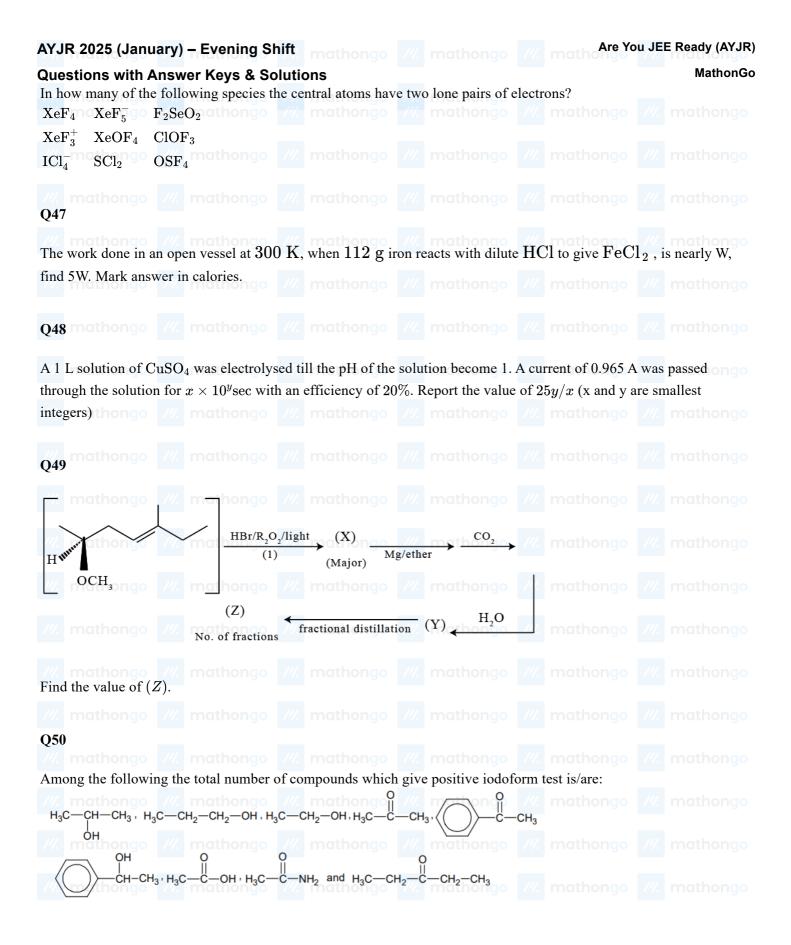
AYJR	2025 (Janua	ry) – Evenin	g Shift					Are Ye	ou JE	E Ready (AYJR)
AYJR 2025 (January) – Evening Shift Are You JEE Ready (AYJR) Questions with Answer Keys & Solutions MathonGo										
	nathongo mathongo									
(3) 8										
(4) 6										
/// Q31										
	the electronic	configurations	s of few e	elements. Select	t the i	ncorrect Match	///.			
//1	$1s^2 2s^2 2p$	⁵ / mathon	Mos	t electroneg odic table	ativ	e element in	the	mathongo	14.	
2	$1s^2 2s^2 2p$	³ / mathor	1	element belo	ongir	ig to 3 rd per	riod	and 5^{th}	111.	
3	$egin{array}{c c} 1s^2 2s^2 2p \ 3p^6 3d^8 4s \end{array}$		0	lock elemen	t ///.	mathongo	11.	mathongo	111.	
4	$\frac{3p}{1s^2 2s^2 2p}$		An ele	ement from	18^{th}	group	///	mathongo	111.	
(1) 1	and 4 only									
(1) 1	and 4 only									
	only mothongo 2 and 3									
11.		ect matches.								
						mathongo				
	orrect statemen		-							
	OH		ЭН	mathcogo		mathon of the second se	Ð			
∕ (P) ⊦	IO NOH		€		o ///.		н \О			
<i>A</i> - G	& S are tauton	mathon ners.		mathongo		mathongo				
	& S are resona	<u>r matnon</u>	s. //.							
	& R are tautor									
<i>D</i> - F	& Q are reson	ating structure	s. //.							
(1) A	,B,C Only									

- (2) A,B,C,D
- (3) A,B Only
- (4) C,D Only

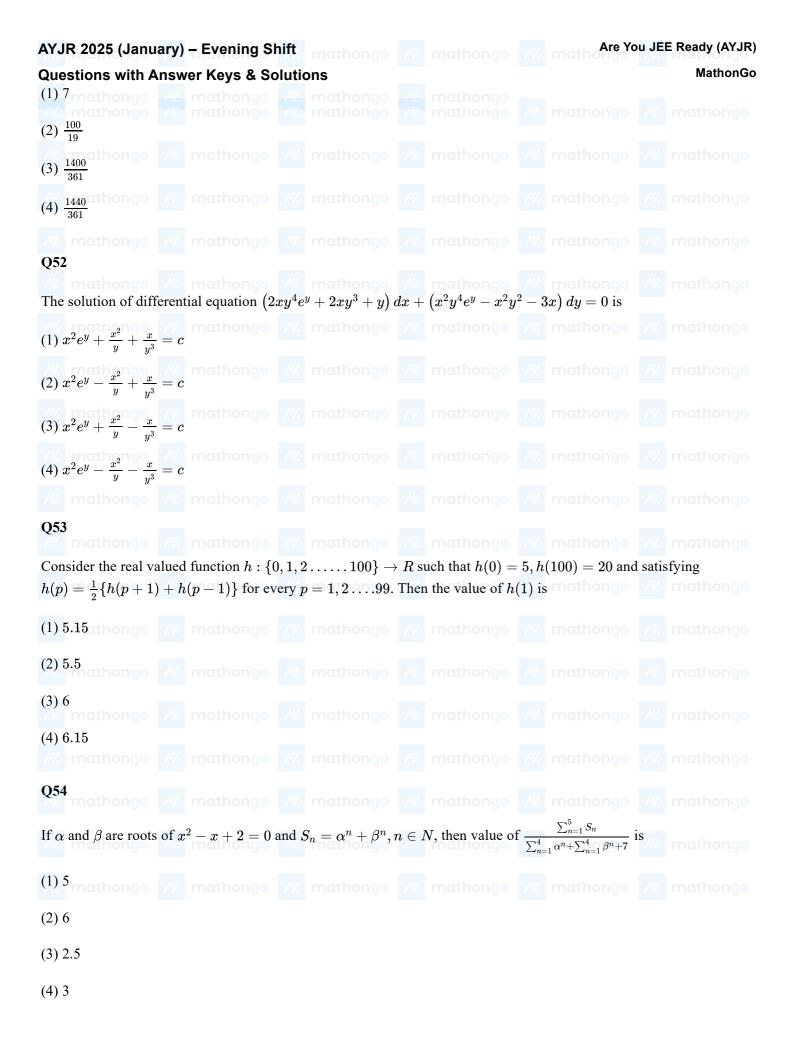
For reactions $A \rightarrow B$ and $P \rightarrow Q$ Arrhenius constants are 10^8 and 10^{10} respectively. If $E_{A\rightarrow B} = 600$ cal/mole and $E_{P\rightarrow Q} = 1200$ cal/mole, then find the temperature at which their rate constants are same.

(4) K_2O_2

AYJR 2025 (Janu	ary) – Evening Sl	hift mathongo		Are Yo	ou JEE Ready (AYJR)
Questions with A	nswer Keys & So	olutions			MathonGo
			in a soil sample, am		
neutralized 10 mL o	of $1M H_2SO_4$. The p	percentage of nitrog	en in the soil is		
(1) 37.33 thongo					
(2) 43.33					
(3) 45.33 mathongo (4) 35.33					
//. mathongo					
Q40 mathongo					
A Buffer solution h	aving pH 4.72 is pre	epared by mixing of	1 M NaOH and 1 M	HCN . What is the	ratio of volume of
acid to base? $(pk_b$	of $\mathrm{CN}^-=9.28ig)$				
(1) 1 : 1athongo					
(2) 1 : 2					
(3) 2 : 1 mathongo					
(4) 3 : 1 mathongo					
Q41 mathongo					
Assertion (A): The	denaturation of prot	teins can destroy all	1°, 2° and 3° protein	n structures.	
Reason (B): Condition	mathongo	mathongo	mathongo		
	ng of milk is due to among the following	//. mathongo	mathongo		
-		-	n for (A)		
(2) (A) is true, (R)	is true but (R) is not	t the correct explana	tion for (A)		
(3) (A) is true but (R) is false hongo				
(4) (A) is false but	(R) is true				
Q42 mathongo					


All the elements of Group 15 form hydrides of the type EH_3 . From the following given statements with respect to EH_3 , select the incorrect one.

(1) Basicity as well as reducing strength is maximum for NH₃


(2) Standard enthalpy of formation is negative only for NH_3 while for others it is positive

AYJR 2025 (January) – Evening Shift				Are Yo	ou JEE Ready (AYJR)
Questions with Answer Keys & Soluti					MathonGo
(3) HEH bond angle follows the order:					
$\mathrm{NH}_3 > \mathrm{PH}_3 > \mathrm{AsH}_3 > \mathrm{SbH}_3$					
(4) Boiling point follows the order: $PH_3 < AsH_3 < NH_3 < SbH_3$					
Q43 mathongo ///. mathongo ///.					
It is an experimental fact that $dmg + Ni(2)$					
	,	-			mathongo
(1) It is non-ionic compound thongo					
(2) It involves intra molecular H-bonding					
(3) Ni(II) is sp ³ hybridised					
(4) It is a diamagnetic complex					
Q44 mathongo /// mathongo ///					
For the reaction below the structure of the p	mathongo	11.	mathongo		
(i) PhN	igBr, i)+	Н	F hongo		
CN (") 113	mathongo				
//. mathongo //. mathongo //.					
mathongo mathongo /// mathongo ///					
//. mathongo //. mathongo //.					
mathongo					
(1) mathongo ///. mathongo ///.					

AYJR 2025 (January) – Evening Shift			Are Yo	ou JE	E Ready (AYJR)
Questions with Answer Keys & Soluti					MathonGo
mathongo mathongo mathongo mathongo					
//. mathongo //. mathongo //.					
(2) mathongc mathongo					
///. mathongo ///. mathongo ///.					
/// mathengo /// mathongo ///					
(3) mathongo ///. mathongo ///.					
Ph Ph //					
$\sim \mathbf{V}$					
/// mathongo /// mathongo ///					
mathongo NH athongo 2					
(4) mathongo /// mathongo ///					
Q45 /// mathongo ///					
6 mol of a mixture of Mohr's salt and $Fe_2(S)$ medium. The mole % of the Mohr's salt in the	he mixture is				
(1) 75 // mathongo /// mathongo /// (2) 50					
(3) 60 mathongo /// mathongo ///					
(4) 25 athongo /// mathongo ///					

The mean and variance of 20 observations are found to be 10 and 4 respectively. On rechecking, it was found that an observation 8 is incorrect. If the wrong observation is omitted, then the correct variance is

AYJR 2025 (Janu								Are Yo	ou JE	E Ready (AYJR) MathonGo
Questions with A		mathongo		mathongo mathongo						
If $A = \begin{bmatrix} a & x & y \\ x & b & z \end{bmatrix}$	1									
$\begin{bmatrix} y & z & c \\ A \text{ with trace equal} \end{bmatrix}$										
(1) 108 (1) 108				mathongo		mathongo		mathongo		
(2) 72										
(3) 36										
(4) 216										
Q56										
The area of the reg								77		
(1) 19								5		
(2) 16 (2)										
(3) 18 athongo										
(4) 17nathongo										
Q57 mathongo										
Suppose families a	lway	s have one, two	or tł	nree children, w	ith p	robabilities $\frac{1}{4}$,	$\frac{1}{2}$ and	$\frac{1}{4}$ respectively	. Ass	ume everyone
eventually gets man						-	_	-		
///. mathongo				mathongo		mathongo	14.	mathongo		
(1) $\frac{27}{128}$ (2) $\frac{37}{128}$										
(3) $\frac{25}{128}$ athongo										
(4) $\frac{20}{128}$ athongo										
W mathongo Q58										

 $\vec{a} = 3\hat{i} + \hat{j} - \hat{k}, \vec{b} = \hat{i} - 4\hat{j} + 5\hat{k}, \vec{c} = 4\hat{i} + 5\hat{j} - \hat{k}$ are three vectors and a vector \vec{r} is perpendicular to both the vectors \vec{b} and \vec{c} . If $\vec{r} \cdot \vec{a} = 9$, then $\vec{r} =$

(1) $3(\hat{i} - \hat{j} - \hat{k})$

AYJR 2025 (January) – Evening Shift mathematical ///	Are You JEE Ready (AYJR)							
Questions with Answer Keys & Solutions MathonGo								
(2) $3(\hat{i} + \hat{j} + \hat{k})$ mathongo m								
$(3) 9(\hat{i} - \hat{j} - \hat{k})$ $(4) 9(\hat{i} - \hat{j} + \hat{k})$ mathematical								
Q59 mathongo ///. mathongo ///. mathongo ///.								
Let the solution of the equation $\frac{dy}{dx} = y + \int_0^2 y dx$ is $y(x)$. If $y(0)$	y) = 1, then $y(2) = 1$							
(1) $\frac{e^2+2}{4e^2-1}$ mathenge /// mathenge ///								
(2) $\frac{2e^2+1}{4-e^2}$ mathematic mathemati								
(3) $\frac{2e^2-1}{4e^2-1}$ mathematic <i>III</i> mathematic <i>III</i> mathematic <i>III</i>								
(4) $\frac{e^2-2}{4-e^2}$ hongo /// mathongo /// mathongo ///								
Winathongo /// mathongo /// mathongo ///								
Let $f(x) = \begin{cases} 4x - x^3 + \ell n \left(b^2 - 3b + 3\right), & 2 \le x < 3 \\ x - 18, & x \ge 3 \end{cases}$. Find a smallest value at $x = 3$.	mathongo ///. mathongo ///. mathongo							
Let $f(x) = \begin{cases} & & \text{Find a} \\ & & x - 18 \end{cases}$ $x \ge 3$	all the possible real values of b such that $f(x)$ has the							
smallest value at $x = 3$.								
(1) $(-\infty,2] \cup [3,\infty)$ mathongo /// mathongo ///								
(2) $(-\infty,1] \cup [2,\infty)$ mathematical mathemati								
(3) (1,2] mathongo /// mathongo ///								
(4) $(-\infty, 2]$ mathongo mathongo mathongo								
Q61 mathongo /// mathongo /// mathongo ///								
If $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{2}{3x}\right) + \tan^{-1}\left(\frac{3}{4}\right) = \frac{\pi}{2}$, then	n the value of $ an\left(\pi-2 an^{-1}x ight)$ is :							
$(1) \frac{24}{7} \text{mathongo} \qquad /// \text{mathongo} \qquad // \text{mathongo} $								
(2) $\frac{7}{24}$								
(3) $\frac{25}{7}$								
7								

(4) $\frac{7}{25}$

AYJR 2025 (January) – Evening Shift		Are You JI	EE Ready (AYJR)
Questions with Answer Keys & Solutions			MathonGo
Q62 mathongo ///. mathongo ///. mathongo ///. mathongo			
If z be a complex number satisfying $ z ^2 + 2(z + \bar{z}) - 5 = 0$,
$\sqrt{-1}$)thongo /// mathongo /// mathongo			
(1) Circle with centre $1 - 2i$ and radius $4 \times$ mothongo			
(2) Circle with centre $1 + 2i$ and radius 4			
(3) Circle with centre $1 + 2i$ and radius 3 methongo 2 methongo			
(4) Circle with centre $1 - 2i$ and radius 3			
Q63 mathongo ///. mathongo ///. mathongo			
Equation of the line of shortest distance between the lines $\frac{x}{2}$	$= \frac{y}{-3} = \frac{z}{1}$ and	$\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$	$\frac{2}{2}$ is -
		Mathongo	
(1) $3(x-21) = (3y-92) = (3z-32)$			
(2) $3x - 62 = 3y - 93 = 3z + 31$			
(3) $\frac{(x-21)}{3} = \frac{(y+\frac{92}{3})}{3} = \frac{(z-\frac{32}{3})}{3}$			
(3) $\frac{3}{4}$ mathematical mathematical mathematical (4) $x - \frac{62}{3} = y + 31 = \left(z + \frac{31}{3}\right)$ mathematical mathematical mathematical (3) $\frac{3}{3}$ ma			
(4) $x - \frac{1}{3} - y + 31 - (z + \frac{1}{3})$ mathongo /// mathongo /// mathongo			
Q64 mathongo ///. mathongo ///. mathongo			
If system of equations $x + (\sin \alpha)y + (\sin^2 \alpha)z = 0$			
$x+(\coslpha)y+(\cos^2lpha)z=0 \ x+(\sin2lpha)y+(\sin^22lpha)z=0$			
has non trivial solutions, then number of distinct values of α	(where $lpha \in [0,\pi]$),	is, mathongo ///	
(1) 9 mathongo ///. mathongo ///. mathongo			
(2) 6			
ImathongoImathongoImathongo(3) 8			
(4) 7 mathongo ///. mathongo ///. mathongo			

O is the vertex of the parabola $y^2 = 4ax$ and L is the upper end of the latus rectum. If LH is drawn perpendicular to OL meeting OX in H, then the length of the double ordinate through H is

AYJR 2025 (January) – Evening Shift	Are You JEE Ready (AYJR)
Questions with Answer Keys & Solutions	MathonGo
(1) $4\sqrt{5}$ hongo /// mathongo /// mathongo /// mathongo	
(2) $4\sqrt{5} a$	
$(3) 3\sqrt{5} a$	
/// mathongo /// mathongo Q66	
	mathongo mathongo mathongo
The direction cosines of two lines are given by $2\ell + \lambda m + lines$ are normandiaular	
innes are perpendicular.	
(1) $\frac{1}{3}$ mathengo ///. mathengo ///. mathengo	
(2) ² / ₉ mathongo ///. mathongo ///. mathongo	
(4) None of these mathongo /// mathongo	
Q67 mathongo ///. mathongo ///. mathongo	
If $f(x)$ be a function such that $f(x+1) = rac{f(x)-1}{f(x)+1}, orall x \in \mathbb{N}$	and $f(1) = 2$ then $f(999)$ is -
(1) -3 mathongo ///. mathongo ///. mathongo	
$(3)\frac{1}{2}$	
$\begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	
Q68 /// mathongo /// mathongo /// mathongo	
Let $f(x) = \lim_{n \to \infty} \tan^{-1} \{ 4n^2 (1 - \cos \frac{x}{n}) \}$	and $g(x) = \lim_{n \to \infty} \frac{n^2}{2} \ln \cos \left(\frac{2x}{n} \right)$, then
$\lim_{x \to 0} \frac{f(x) + 2g(x)}{x^6} =$	and $g(x) = \lim_{n \to \infty} \frac{n^2}{2} \ln \cos \left(\frac{2x}{n} \right)$, then
(1) $\frac{4}{3}$ mathongo ///. mathongo ///. mathongo	
$(2) - \frac{4}{3}$	
(3) $\frac{8}{3}$	
$(4) - \frac{8}{3}$	

AYJR 2025 (Janu	ı <mark>ary) –</mark> Evening S	hift mathongo		Are Yo	ou JEE Ready (AYJR)
	Answer Keys & So				MathonGo
If $\int rac{x^{pq-p-1}}{(x^p+1)^{q}}dx$	$=rac{2\left(1+x^{-p} ight)^{1-q}}{\lambda p(q-1)}$ -	$+\operatorname{c}(p,q\in N-$	$\{1\})$, then the value	e of λ is (here, c is a	n arbitrary
constant)					
(1) 3 mathongo					
(2) 4 mathongo					
(3) 2 mathongo					
(4) 6 mathongo					
Q70 mathongo					

Consider $\triangle ABC$ whose vertices are $A \equiv (m, n), B \equiv (1, 2), C \equiv (2, 3)$ and vertex 'A' lies on the line 2x - y + 3 = 0, where $m, n \in N$ with m + n > 10. Let area of $\triangle ABC$ be S such that [S] = 2, where [x] denotes greatest integer less than or equal to x. If the equation of side AC of $\triangle ABC$ is ax + by = 9, then (a + b) equals methods.

(1) 4 mathongo			
(2) 15 mathongo			
(3) 3			
///. mathongo			
Q71 mathongo			

If number of arrangements of letters of the word "DHARAMSHALA" taken all at a time so that no two alike letters appear together is $(4^a \cdot 5^b \cdot 6^c \cdot 7^d)$, (where $a, b, c, d \in N$), then a + b + c + d is equal to

Q72 mathongo /// mathongo				
Let $\vec{x} = \hat{i} + 3\hat{j} - 2\hat{k}, \vec{y} = 2\hat{i} + 4\hat{j} + \hat{k}$	and a vector \vec{z} satis	fying $ec{x} imesec{z}=ec{x} imesec{z}$	\vec{j} and $\vec{z} \cdot \vec{x} = 0$. The	n $[\vec{z}]$ is, (where [.]
denotes greatest integer function)				
Q73 mathongo /// mathongo				

The number of points where f(x) = |x + [x]| - 3[2x] + 4[3x] is discontinuous in [-1, 1], is: [Note: [k] denotes greatest integer less than or equal to k.]

AYJR 2025 (Janu Questions with A	N sw	ver Keys & So	oluti	ons						MathonGo
The coefficient of a	x^4 a	ppearing in the	expa	nsion of $(1 +$	x^2)	$(1-x)^{6}$	(1 +	$(1 + x^3)^{\circ} (1 + x^3)^{\circ} $	$(x)^{6}$	is mathongo
Q75 mathongo										
If $\lim_{n \to \infty} \int_{\frac{-1}{3/\pi}}^{\frac{1}{\sqrt{n}}} c$	$x \ln($	$(1+e^x+e^{2x}$	+ e	e^{3x} $+$ \dots	e^{2nz}	$^{x})dx=\prod_{k=}^{m}$	$_{2}(1$	$-\frac{1}{L^2}$ then f	ind th	ne value of <i>m</i> .
<u>∛</u> mathongo										