```
MathonGo
```

A	NSWER KE	YS	//. mathongo	74. Indthongo	7%. mathongo	7%. Imathongo	///.
1. (3) _{nathongo}	2. (4) _{nathongo}	3. (3) athongo	4. (4) athongo	5. (3) 1	6. (3) thongo	
7. ((2, 4)	8. (2)	9. (4)	10. (3)	11. (3)	12. (3)	
13.	(3) athongo	14. (1)athongo	/15. (1) thongo	/16. (3) thongo	//17.(2) hongo	/// 18. (1)hongo	
19.	(2)	20. (3)	21. (2)	22. (6)	23. (20)	24. (3)	
25.	(2) athongo	26. (2) ^{athongo}	27. (4) thongo	28. (4)	29. (2)	30. (2)	
31.	(3)	32. (1)	33. (3)	34. (1)	35. (2)	36. (1)	
37.	(3)	38. (4)	39. (1)	40. (1)	41. (1)	42. (4)	
43.	(1)	44. (3)	45. (3)	46. (6)	47. (10)	48. (35)	
49.	(4051)	50. (18)	51. (3)	52. (2)	53. (4)	54. (1)	
55.	(2) athongo	56. (3) _{athongo}	57. (4) thongo	58. (2) thongo	59. (3) hongo	// 60. (4) nongo	
61.	(1)	62. (4)	63. (3)	64. (2)	65. (2)	66. (4)	
67.	(3) athongo	68. (1)athongo	69. (3) thongo	//70. (2) thongo	// 71. (53) ongo	/// 72. (81) ongo	
73.	(9)	74. (3)	75. (2)				
1.	(3) After the clo	osing of S. C bulb o	r lamp become shor	t-circuited			
	mathongo	///. mathongo	//. mathongo				
	mathongo ∴ new circuit	A E	nathongo				
		//. mathongo	//. mathongo				
	the potential ac Potential across	ross A and B before A and B after the cl	the closing of $S = \frac{1}{2}$ osing of $S = \frac{V}{2}$	⁷ ³ ///. mathongo			
	As $P \propto V^2$ $\therefore \ rac{P_{ m i}}{P_{ m f}} = rac{4}{9}$						
///. 2.	$P_{\mathrm{f}} = rac{P_{\mathrm{i}} imes 9}{4} = 2$ (4) $rac{B^2}{2\mu_0} = \mathrm{Ener}$	$2.25 \; P_{ m i} = { m Energy \over m Volume}$	//. mathongo				
	$\Rightarrow \frac{\left[\mathrm{ML}^{2}\mathrm{T}^{-2}\right]}{\left[\mathrm{L}^{3}\right]} =$	$= \left[\mathrm{ML}^{-1} \mathrm{T}^{-2} ight]$ 90					
3.	(3) mathongo						

AYJR 2025 (January) – Morning Shift Questions with Answer Keys & Solutions

Are You JEE Ready (AYJR)

MathonGo

16V /// 16V ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo **≩**2kΩ 6V aliongo ///. mathongo ///. mathongo ///. mathongo /// m m $4k\Omega$ /// mathongo /// mathongo /// mathongo ///. mathongo ///. mathongo ///. mathongo $i_1 = \frac{6}{4} = 1.5 \,\mathrm{mA}$ Maximum current will be obtained for battery voltage mathongo ///. mathongo ///. mathongo ///. mathongo 16V $i=rac{16-6}{2}=5\,\mathrm{mA}$ $i_2(max) = 5 - 1.5 = 3.5 \text{ mA}^{30}$ /// mathongo /// mathongo /// mathongo /// mathongo d/3nathongo /// mAhongo /// mathongo /// mathongo /// mathongo mathongo 👭 mathongo 👭 mathongo 👭 mathongo hathongo 🛛 hongo 👭 mathongo 👭 mathongo 👭 mathongo 🖊 mathongo K≠∞ (4) athongo 📈 mati di //. mathongo //. mathongo //. mathongo //. mathongo $C' = rac{AG_0}{2d/3} = rac{3}{2} \cdot rac{AG_0}{d} = rac{3C}{2}$ $U_i = rac{1}{2} \cdot rac{3C}{2} (100)^2$ $q_i=C'v=rac{3C}{2} imes 100=150{ m C}$ $U_f = \frac{q_i^2}{2c} = \frac{(150c)^2}{2c} = \frac{150^2}{2} \cdot C$ mathematical $w = U_f - U_i = \left(egin{array}{c} rac{150^2}{2} - rac{3 imes 100^2}{4} \ \downarrow & \downarrow \end{array} ight) c = 93.75 \mu ~{ m J}$

Are You JEE Ready (AYJR)

Questions with Answer Keys &

Que	Questions with Answer Keys & Solutions MathonGo										
5.	(3) We have										
	$p = \frac{F}{A} = \frac{F}{\pi R^2}$ So $\frac{\Delta p}{\Delta p} \times 100$	$\frac{1}{2}$ ///.	$\frac{\Delta F}{\Delta F} \times 100 + 100$	ΔR	mathongo - × 100						
	p p $= 5 + 2(3) = \Delta n$	5 +	F 6=11 ongo	R //.	mathongo						
///. 6.	$\Rightarrow \frac{\Delta p}{p} \times 100$	= 1 ///.	1% mathongo								
			mathongo								
			mathongo	///	hathongo						

	mather mathered mathered	
	📶 methongo 📶 m hongo 📈 mathongo	
	mathengo /// mathongo /// maXongo	

mathongo	Ь	mathongo						
(3) Z								
$V=\int_{0}^{R}rac{klpha\pi rd}{lpha\sqrt{r^{2}+1}}$	$\frac{r}{z^2} =$	$rac{\sigma}{8\epsilon_0}\int_0^R rac{rdr}{\sqrt{r^2+z^2}}$						
$t^2=r^2+z^2$								
tdt = rdr								
$V=rac{\sigma}{8\epsilon_0}\int_z^{\sqrt{2^2+1}}$	$-R^2$ dt	$t=rac{\sigma}{8\epsilon_0}\Big(\sqrt{R^2+1}$	- z ² -	-z)				

AYJR 2025 (January) – Morning Shift Questions with Answer Keys & Solutions

Are You JEE Ready (AYJR)

MathonGo

7.							
	mathongo 📝	math	mathongo				
	mathongo 💋	h/2	// <mark>f</mark> nathongo				
	mathongo	mathongo t ₂	// mathongo				
	mathongo //	mathon	/ mathongo				
	(2, 4) $-h = 0 - \frac{1}{2}gt^2$	mathongo	///. mathongo				
	$t=\sqrt{rac{2h}{g}}\ldots\ldots(rac{-h}{2}=0-rac{1}{2}gt_1^2)$	1) mathongo					
	$t_1 = \sqrt{\frac{h}{g}} \dots \dots \dots \dots \dots$	2)nathongo					
	so $t_2 = t - t_1$ = $\sqrt{\frac{2h}{g}} - \sqrt{\frac{h}{g}}$ ///						
	$t_2 = \sqrt{rac{h}{g}} \left(\sqrt{2} - 1 ight)$ equation $3/1$)(3) mathongo					
	$\frac{t_2}{t_1} = \frac{\sqrt{\frac{h}{g}} \left(\sqrt{2} - 1\right)}{\sqrt{\frac{h}{g}}}$						
///. 8.	$\frac{t_2}{t_1} = \sqrt{2} - 1$ (2) Volume of cone	$=rac{1}{3}\pi\mathrm{r}^{2}\mathrm{h}$					
	Mass of cone, m ₁ = Mass of hemisphere	$ ho = ho imes rac{1}{3} \pi \mathrm{r}^2 \mathrm{h}$ e, m $_2 = ho imes rac{1}{2} imes$	$<rac{4}{3}\pi r^3$				
		$= ho imes rac{2}{3} \pi$	r ³ ///. mathongo				
	mathong 7//.		// mathongo				
		G	// h mathongo				
	$\frac{h}{4}$	r G					
	mathe s	-G ₂	///. mathongo				

Now, $Y=\frac{m_1y_1+m_2y_2}{m_1+m_2}$

9.

Are You JEE Ready (AYJR)

MathonGo

Questions with Answer Keys & Solutions

-

S

19A

$\Rightarrow ho imes rac{1}{3} \pi r^3 \left(rac{h^2}{4} - 2r imes rac{3r}{8} ight) = 0$ /// mathongo /// mathongo /// mathongo /// mathongo $\frac{h^2}{4} - \frac{3r^2}{4} = 0 \text{ or } h = \sqrt{3} r$ $(M) \text{ mathematication of } M \text{ mathematicati$ $\begin{array}{c} & & & \\ & & \\ & + \\ &$ $E_0 = 2A\epsilon_0 + \left| + \right| + \frac{\sigma}{2\epsilon_0} = \frac{Q}{2A\epsilon_0} \quad \text{mathong} \quad \text{ma$ maŧ ///. mathongo ///. mathongo ///. mathongo ///. ///. Non Metal ///. mathongo ///. mathongo ///. Metal Plate (4) 10. (3) The initial velocity of the block to undergo a complete vertical circular motion is $u = \sqrt{5gR}$ ${m v}$ iathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo hathongo 📶 mathongo 📶 mathongo 🕖 mathongo 🕖 mathongo mg Let us assume that the speed of the block when it is moving in the vertical direction is v, then using conservation of mechanical energy we get hongo with mothongo with mothongo with mothongo with mothongo $\Rightarrow v^2 = \sqrt{3qR}$ The tangential and centripetal accelerations of the block are $a_{ m t}=g\left(\downarrow ight)$ and $a_{ m c}=3g\left(\leftarrow ight)^{ m tot}$ mathematical $\prime\prime\prime\prime$ mathematical mathematical $\prime\prime\prime\prime$ mathematical mathematical $\prime\prime\prime\prime$ $a_{ m net}=\sqrt{a_{ m c}^2+a_{ m t}^2}=g\sqrt{10}$ 11. (3) Shunt is a low resistance used in parallel with the galvanometer to make it ammeter. 1A rathongo ///. mathongo ///. mathongo ///. mathongo ~~~~~ 20A **22.8** Ω

Are You JEE Ready (AYJR)

MathonGo

The voltage across galvanometer = voltage across the shunt				
Given, ${ m G}=22.8~\Omega~,~~i=20~{ m A}~,~~i_{ m G}~=~1~{ m A}$				
$\therefore S = rac{1 imes 22.8}{20 - 1} = rac{22.8}{19} = 1.2 \ \Omega$ go we mathematicate ///				
12. (3) : de-Broglie relation of a charged particles,				
$\lambda = \frac{h}{mv}$ ngo /// mathongo /// mathongo ///				
Velocity of charged particle at time t,				
$\mathbf{v}=v_0\hat{i}+rac{eE_0}{m}t\hat{j} ext{ or } v =\sqrt{v_0^2+\left(rac{eE_0}{m}t ight)^2}$				
Hence, $\lambda = \frac{h}{m\sqrt{v_0^2 + \left(\frac{eE_0}{m}t\right)^2}}$				
or mathongo h mathongo χ_0 mathongo $\lambda =$				
$mv_0\sqrt{1+rac{e^2E_0^2t^2}{m^2v_0^2}}$ $\sqrt{1+rac{e^2E_0^2t^2}{m^2v_0^2}}$				
$ \begin{pmatrix} \ddots \lambda_0 = \frac{1}{mv_0} \end{pmatrix}_{go} / / mathongo / / 13. $	mathongo			
///. mathongo ///. mathongo ///. mathong	mathor	3 ///.		
/// mathongo /// mathongo /// mathorgo ///	mahongo			
\sim matter $\mathcal{L}_{ngo} \otimes \overline{B}$ mathengo \sim mathengo \sim	$\vec{\ell_{AB}}$			
/// mathongo /// mathongo /// mathong ///				
(1) mathongo /// mathongo /// matlongo ///				
$\overrightarrow{dF} = i \cdot (\overrightarrow{dl} \times \overrightarrow{B})$ mathenge \overrightarrow{dR} mathenge \overrightarrow{dR}				
$F = i \int_{\overrightarrow{dl}} \overrightarrow{dl} \times \overrightarrow{B}$ mathenge $\cancel{mathenge}$ mathenge $\cancel{mathenge}$				
I_{AB} $F=iBQ$ go /// mathongo /// mathongo ///				
* Right hand Palm rule				
14. (1) $g_e = g_p - R\omega^2 \implies \frac{g}{2} = g - R\omega^2$ (4)				
$R\omega^{2} = \frac{\omega}{2} \implies R^{2}\omega^{2} = \frac{\omega^{2}}{2} \implies V^{2} = \frac{\omega^{2}}{2} \dots (1)$ The escape velocity, $V_{e} = \sqrt{2gR} \dots (2)$				
From (1) and (2)				
${ m V}_{ m e}=\sqrt{2 imes 2{ m V}^2} \qquad \Rightarrow \ { m V}_{ m e}=2{ m V}$				

Are You JEE Ready (AYJR)

MathonGo

Are You JEE Ready (AYJR)

Questions with Answer Keys & Solutions

	Now, work done // mathongo //							
	$\mathrm{W} = \left(rac{1}{2} imes 1 imes 2 imes 10^5 - rac{1}{2} imes 5 imes 1 ight)$	$ imes 10^5 ight) imes 10^{-3}$ =	= 750) J				
20.	(3) $f = a - bx$	^{//} máthongo						
	${f f}_{n_{ef}}=a-bx-f_s$ For block to move							
	at $x = 0$							
	$a - b_x > (I_s)_{max} = \mu mg$	starts at $\mathbf{v} = 0$						
	$w = \int (a - bx - \mu mg) dx$	/ mathongo						
	$o = ax - \frac{bx^2}{2} - \mu mgx$							
	$\Rightarrow x \left(a - \frac{bx}{2} - \mu mg \right) = 0$							
	$ x = 0 a - \frac{bx}{2} - \mu mg = 0 $							
	$\frac{bx}{2} = (a - \mu mg)$ $x = \frac{2}{b}(a - \mu mg)$							
21.	(2) Max ⁿ energy is liberated for trans $E_n \rightarrow E_1$	ition mathongo						
	and minimum energy for $E_n ightarrow E_{n-1}$ $rac{E_1}{n^2} - rac{E_1}{12} = 52.224 \mathrm{eV}$	Hence,						
	and $\frac{E_1}{n^2} - \frac{E_1}{(n-1)^2} = 1.224 \mathrm{eV}$							
	Solving we get, $E_1 = -54.4 \mathrm{eV}$							
	and $n = 5$ hence, $E_1 = -\frac{13.6Z^2}{2} = -54.4$							
	Z = 2.0 model							
22. ///	$\mathrm{e}=-rac{\mathrm{d}\phi}{\mathrm{d}\mathrm{t}}$ mathematical definition of the second sec							
	(6) $^{1} = -\overline{R} \frac{dt}{dt}$ $ \mathbf{i} = \frac{1}{3} \frac{d}{dt} (3at^{3} - 3bt^{2}) = \frac{1}{3} [9]$	$at^2 - 6bt]$						
	$ \mathbf{i} = 3\mathbf{at}^2 - 2\mathbf{bt} = 6\mathbf{t}^2 - 12\mathbf{t}$							
	For maxima of <i>i</i>							
	$\frac{dt}{dt} = 0$ $12t - 12 = 0 \Rightarrow t = 1sec$							
	$\mathrm{i_{max}}=6 imes1^2-12 imes1=6$ Amp.							
22	(20) Given: $d = 1.2 \text{ mm}$) = 6000 Å	-6×10^{-7} m	_ ת	1 m m - 1 m	a — 1	$\times 10^{-2}$ m		

23. (20) Given: d = 1.2 mm, $\lambda = 6000 \text{ Å} = 6 \times 10^{-7} \text{ m}$, D = 1 m, $x = 1 \text{ cm} = 1 \times 10^{-2} \text{ m}$ For n^{th} bright fringe, $x = n \frac{\lambda D}{d}$

Are You JEE Ready (AYJR)

MathonGo

Questions with Answer Keys & Solutions

$\therefore 1 imes 10^{-2} = rac{n imes 6 imes 10^{-7} imes 1}{1.2 imes 10^{-3}}$ motion					
$\therefore n = rac{1.2 imes 10^{-5}}{6 imes 10^{-7}} = 0.2 imes 10^2 = 20$					
There are 20 bright fringes formed over 1 cm wi	idth on the s	screen.			
24. (3) The force constant of wires are					
//. Athongo //. mathongo //. matho					
$ \begin{array}{c} & & \\ & & $					
/// thotao /// mathongo /// matho					
\mathcal{U} mathematic \rightarrow Athongo \mathcal{U} mathematic					
$k_1 = \frac{YA}{l}, k_2 = \frac{2YA}{l}$ mathematical mathemati					
In series $k = \frac{k_1 a_2}{k_1 + k_2} = \frac{2}{3} \left(\frac{1K}{l} \right)$ $T = 2\pi \sqrt{\frac{3ml}{2YA}}$					
25. (2) Drawing free body diagram of the cylinder w	vith respect	to plank			
$2\mu mg=ma\Rightarrow a=2\mu g$					
$(\mu m g R) = \frac{1}{2} m R^2 \alpha$; $\alpha - \frac{2 \mu g}{r}$					
Acceleration of point of contact with respect to p	blank is $4\mu g$				
Velocity of pure rolling starts,					
$-\mathrm{v}+4\mu\mathrm{gt}=0$					
t = $\frac{20}{4 \times 0.5 \times 10}$ = 1s Distance traveled by cylinder with respect to plat	ngo ///. nk in 1s is				
$S' = -vt + \frac{1}{2}(2\mu g)t^2 = -15m$ At t = 1s, the velocity of cylinder with respect to	to plank is				
${ m t}=1{ m s}$ ${ m v}_{ m rel}=-{ m v}+2\mu{ m gt}=-20+2 imes0.5 imes10=-10$	0 m/s				
Remaining 10 m will be travelled in time $t' = \frac{10}{10}$ \therefore Total time = 2s	$\frac{1}{2} = 1s$				
26. (2) The correct match is : A-III, B-IV, C-V, D-I. Dipole in different direction add up to give large	r value.				

Molecules with their geometry and dipole moments are given below

Are You JEE Ready (AYJR)

Molecule	Geometry	Dipole moment	mathongo	
/// mathonH	go Linear mathongo	0.79 _{mathongo}	mathongo	
mathong	Bent go /// mathongo	0.95 /// mathongo //		
// mathen // mathon				
//. mathongo //. mathon	go ///. mathongo	//. mathongo //	mathongo	
Molecule	Geometry	Dipole moment	_	
mathongo	Pyramidalhongo	1.47 mathongo		
///. mathongo H//. mathon	go ///. mathongo	//. mathongo //	mathongo	
/// mathongo	Tetrahedral	1.04 /// mathongo ///		
mathongo Cl. mathon	go ///. mathongo	14. mathongo 14	mathongo	
$(\mathrm{Cl} ightarrow 2$ chlorine atoms are pre	esent opposite to each o	ther, hence cancel dipole). mathongo	
27. (4) In CuCl_2 , Cu^{2+} has d ⁹ con	figuration, exhibit d-d 1	transition and show color	ur. Similarly in V	$ m VOCl_2, V^{4+}$ has d^1
configuration, can exhibit d-d	transition and show cold	our. mathongo		
$Zn^{2+} \Rightarrow 3d^{10}(Colourless)$				
${ m Hg}^{2+} \Rightarrow 5{ m d}^{10}({ m Colourless})$				
$V = 4s^2 3d^3$ mathematical sector $V = 4s^2 3d^3$	go 📶 mathongo			
$V^{\star +} = 4s^{\circ} 3d^{\star} (d - d \text{ transition})$ $Cu^{+2} = d^9 \text{ configuration} = 1$	1)			
$C_{u} = 0$ configuration = 1 =	$C_{1} = C_{1} + C_{2} + C_{1} + C_{2} + C_{2} + C_{1} + C_{2} + C_{2} + C_{1} + C_{2} + C_{2$	antoin 1 mar - in- 1 -1 - i		
Since, in both CuCl ₂ and VOC	J_{12}, Cu^{-1} and V^{-1} ion c	contain 1 unpaired electro	on each, so their	colour may be same.

Are You JEE Ready (AYJR)

MathonGo

Questions with Answer Keys & Solutions

Thus, correct order is $CH_3CH_2 \cdot CHO > PhCHO > PhCOCH_3$ and the given order is not correct.

(III) Boiling point of alcohols (due to ability to form H-bond) are higher than that of aldehydes which are more than that of ketones. (due to less steric-hinderance and more surface area in aldehyde group, having same number of C-atoms)

AYJR 2025 (January) – Morning Shift Questions with Answer Keys & Solutions

Are You JEE Ready (AYJR)

Are You JEE Ready (AYJR)

34. (1) Identify the Y and Z. thongo ///. mathongo ///. mathongo ///. mathongo ///.
NH₂ N ⁺ ₂ CI [−] OH OH
$ \begin{array}{c} \hline \\ \hline $
$\begin{array}{c} \hline \\ \hline $
35. (2) Option A: /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///
- Given Name: Pentaaaminethiocyanato-N-chromate(III) tetrachlorozincate(II)
- The compound is $\left[\operatorname{Cr(NH_3)}_5(\operatorname{NCS'})\right]$ [ZnCl ₄]: go /// mathongo /// mathongo /// mathongo ///
- $[Cr(NH_3)_5(NCS)]$ is a cation with Chromium in the +3 oxidation state (hence "chromium(III)").
- NCS is named as thiocyanate with the donor atom specified as "N" (nitrogen-donor).
. [ZnCl ₄] is the anion named as "tetrachlorozincate(II)".
Option B: /// mathenae /// mathenae /// mathenae /// mathenae /// mathenae ///
- Mohr's salt is $FeSO_4 \cdot (NH_4)_2SO_4 \cdot 6H_2O$:
- Mohr's salt is a double salt because it dissociates completely in water to give all ions Fe^{2+} , $(NH_4)^+$, SO_4^{2-} .
- Double salts retain their composition only in solid form and break into simple ions in solution.
- This statement is correct.
Option C:
$-\ln \left[\mathrm{Co(NH_3)}_4 \mathrm{(NO_2)}_2 ight] \mathrm{NO_3}:$
- The complex ion is $[Co(NH_3)_4(NO_2)_2]^+$.
- The coordination number of cobalt is the number of ligand donor atoms attached to it.
- NH ₃ contributes 4 donor atoms and NO ₂ contributes 2 donor atoms, so the coordination number is $4 + 2 = 6$.
- This statement is correct.
Option D: 90 // mathongo // mathongo // mathongo // mathongo // mathongo //
- $\ln[\mathrm{Fe}(\mathrm{CO})_5]$:
- CO is a neutral ligand, and the oxidation state of Fe is 0 because the charge of the complex is neutral.
- Secondary valency refers to the coordination number (number of ligands attached).
- Here, Fe is coordinated with 5 ligands (CO), so its secondary valency is 5, not 0.000 mothers with 5 ligands (CO), so its secondary valency is 5, not 0.000 mothers with 5 ligands (CO), so its secondary valency is 5, not 0.000 mothers with 5 ligands (CO), so its secondary valency is 5, not 0.000 mothers with 5 ligands (CO), so its secondary valency is 5, not 0.000 mothers with 5 ligands (CO), so its secondary valency is 5, not 0.000 mothers with 5 ligands (CO), so its secondary valency is 5, not 0.000 mothers with 5 ligands (CO), so its secondary valency is 5, not 0.000 mothers with 5 ligands (CO), so its secondary valency is 5, not 0.000 mothers with 5 ligands (CO).
- This statement is incorrect.
36. (1) Assertion: // mathongo // mathongo // mathongo // mathongo // mathongo //
"The electron gain enthalpy of N is + ve, while that of P is - ve."
This statement is true. Nitrogen's electron gain enthalpy is slightly positive (+) because of its small size and high
electron density, making it difficult for an additional electron to be accepted. In contrast, phosphorus has a larger size,
reducing electron-electron repulsion, so it has a negative (-) electron gain enthalpy.
Reason:
"This is due to the smaller atomic size of N in which there is considerable electron-electron repulsion, and hence the
additional electron is not accepted easily."
This statement is also true. The small size of nitrogen causes high electron density in its outermost shell, leading to
significant repulsion when a new electron is added. This makes it less favorable to gain an electron, explaining why its
electron gain enthalpy is positive.

Are You JEE Ready (AYJR)

MathonGo

37. (3) athongo ///.										
For strong electrolyte, curve given is straight line using Kohlrausch's Law of Independent Migration.										
$\lambda_{ m m} = \lambda_{ m m}^0 - { m k}\sqrt{ m C}$.										
///. mathongo	mathongo									
//. mathong	athongo									
As HCl is the stron	gest. (1) curve n	natch	es to HCl and	(2) c	urve to NaCl.					
For weak electrolyt	e. when conc. de	ecrea	ses. α increases	s. the	curve is given	as				
	e, when cone. at	Joi Cu	ses, a mereuse	, inc		ub				
$\frac{1}{\lambda_{\star}}$ hathongo $\frac{1}{\lambda_{\star}}$										
/// malhongo ///										
///. mathongo /// \sqrt{c} –	<u>ma</u> thongo ≽									
As NH ₄ OH is wea	k base so (3) cur	rve m	atches to NH₄	OH						
· option (c) is the	correct answer		induitiong04							
20 (4) Have the example	correct and wer.									
38. (4) Here the compo	und 'A' is ngo									
	und 'A' is noo	Η								
38. (4) Here the compo	mathann O)H								
38. (4) Here the compo	athongo)H								
38. (4) Here the compo	athongo mathongo mathongo)H								
38. (4) Here the compo	mathongo)H								
38. (4) Here the composition of	mathongo mathongo mathongo	H								

Are You JEE Ready (AYJR)

MathonGo

Image: Glyoxalic acid is (OHC - COOH). Proceed reverse Image: mathematic acid is (OHC - COOH).	
HC = 0 $O = CH$	
/// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo	
HOOHOHOHOH // mathence // mathence // mathence // mathence // mathence // mathence	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
/// mathongo // mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///	
/// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo	
39. (1)	
Adsorption chromatography is a type of inquid chromatography in which chemicals are retained based on their adsorption and desorption at the support's surface, which acts as the stationary phase. This method is sometimes also	///.
known as liquid-solid chromatography. In this method, the mobile phase is either liquid or gaseous form. A stationa	ry
phase is a solid form. Paper chromatography is partition chromatography.	14.
40. (1) $[NiCl_4]^{2-}$: Tetrahedral and paramagnetic (weak field ligand, 2 unpaired electrons). $[Ni(CN)_4]^{2-}$: Square planar and diamagnetic (strong field ligand, all electrons paired).	
$\begin{bmatrix} Cu(NH_3)_4 \end{bmatrix}^{2+} \leftarrow dsp^2, \text{ square planer and paramagnetic} \\ [Ni(CO)_4] \leftarrow is sp^3, \text{ tetrahedral but diamagnetic} \end{bmatrix}$	
41. (1) athence /// mathence /// mathence /// mathence	
Due to inert pair effect Pb has four electrons in its valence shell but it shows $+2$ oxidation state. In other words due	to
inert pair effect $+2$ oxidation state is more stable than $+4$ of Pb.	
So, both Assertion and Reason are true and Reason is the correct explanation of Assertion.	
42. (4) As compound having free anomeric carbon is reducing in nature. Therefore D is non-reducing as in it there is no free anomeric carbon.	14.
To identify the non-reducing sugar, we need to consider whether the sugar has a free aldehyde or ketone group capal	ble
of acting as a reducing agent. If both anomeric carbons are involved in a glycosidic bond, the sugar is non-reducing.	
1. Option A: This sugar has a free anomeric carbon (no glycosidic bond involving all reactive groups), so it is a reducing sugar.	
2. Option B: Contains methyl groups blocking the reducing ends, so it appears non-reducing. However, its structure suggests a non-common disaccharide.	
3. Option C: This is glucose, which has a free aldehyde group (in equilibrium with open-chain form), making it a reducing sugar.	
4. Option D: Both anomeric carbons are involved in a glycosidic bond (e.g., in sucrose), so it has no free aldehyde o ketone group. This is a non-reducing sugar.	r

Are You JEE Ready (AYJR)

MathonGo

43. (1) Maximum number of electrons /// mothongo ///			
$=2n^2=2 imes 4 imes 4=32(ext{ when }n=4)$			
Half of the electrons have $\left(+\frac{1}{2}\right)$ spin, i.e., 16			
44. (3) ${ m Fe}({ m s}) ightarrow { m Fe}^{2+} + 2{ m e}^-; \Delta { m G}_1^{ m o}$ methods ///			
$2\mathrm{H^+} + 2\mathrm{e^-} + rac{1}{2}\mathrm{O_2} ightarrow \mathrm{H_2O(l)}; \Delta \mathrm{G_2^o}$			
$\mathrm{Fe}(\mathrm{s})+2\mathrm{H}^++rac{1}{2}\mathrm{O}_2 ightarrow\mathrm{Fe}^{2+}+\mathrm{H}_2\mathrm{O};\Delta\mathrm{G}_3^{\mathrm{o}}$			
Applying, $\Delta G_1^o + \Delta G_2^o = \Delta G_3^o$ with mathematical data and the second			
$\Delta { m G}_3^{ m O} = (-2~{ m F} imes 0.44) + (-2~{ m F} imes 1.23)$			
$\Delta { m G}_3^{ m o} = (-2 imes 96500 imes 0.44) + (-2 imes 96500 imes 1.23) \ \Delta { m G}_3^{ m o} = -322310 \ { m J} \ \dot{\Delta} { m C}^{ m o} = -322 \ { m kJ}$			
15 (3) (a) Higher the charge / size ratio. Higher is the polarisin	mathongo	mathongo	
(b) Geometry for both the species is tetrahedral as in both '	g power. Orven Ω' is en^3 hybri	idised	
(b) Geometry for both the species is terranedral, as in both (c) $113 = [Bn]5f^{14}6d^{10}7s^27n^1 =$ Due to inert pair effect 7	s^2 electron do n	ot take part in bond	formation so most
stable oxidation state is $+1$.			
(d) Successive ionization energies are higher for every elem	nent. 2 nd ionizat	ion of K happens fr	om $3s^2 3p^6$ configuration
which is an inert gas configuration and for <i>Ca</i> it happens fr	om $4s^1$. So, K ł	nas higher second io	nisation energy than Ca.
46. (6) Aromatic compounds			
/// mathongo /// mathongo ///	mathongo		
47. $t = \frac{[R_0] - [R]_E}{K}$ $t = \frac{0.1 - 0.075}{2.5 \times 10^{-3}}$ = $\frac{0.025}{2.5 \times 10^{-3}}t = 0.01 \times 10^3 = 10$ s			
48. (35) W_B mass of ethylene glycol (M = 62) = 46.5gm			
W_A mass of water = 160gm			
ΔT_f depression in freezing point = 11.16 K thongo ///			
Let W_B be the mass of water remaining $\Delta T_f = K_t \frac{W_B \times 1000}{M_B W'_B}$ methongo /// methongo ///			
$11.16 = rac{1.86 imes 46.5 imes 1000}{62 imes W_{ m B}'}$			
Mass of ice that separates out on cooling			
$W_B - W_B = 160 - 125 = 35 { m gm}$			
49. (4051) Writing the formation reaction			
$4\mathrm{C(s)}{+}2\mathrm{H}_2(\mathrm{g}){+}rac{1}{2}\mathrm{O}_2(\mathrm{g}){ o}\mathrm{C}_4\mathrm{H}_4\mathrm{O}(\mathrm{g})$			

Are You JEE Ready (AYJR)

Questions with Answer Keys & Solutions

	$\Delta \mathrm{H}^{\circ}_{\mathrm{f}} = -62 \cdot \mathrm{0} = \Sigma_{\mathrm{reacants}} \mathrm{Enthalpy} \mathrm{of} \mathrm{atomis}$	sation – Σ	$_{ m products}{ m Enthalpy}$	y of atomisation	
	$\Sigma_{\mathrm{products}}$ Enthalpy of atomisation = $\Sigma_{\mathrm{reactants}}$	Enthalpy	of atomisation	$n+62\cdot 0=4 imes 72$	17 + 4 imes 218 + 249 + 62
	$= 2868 + 872 + 249 + 62 = 4051 \text{ kJ mol}^{-1}$ tho				
50.	(18) The reaction is as follows				
	$\operatorname{NaCl} \xrightarrow{\operatorname{K_2Cr_2O_7/H^{\oplus}}} \operatorname{Cr}_{(A)} \xrightarrow{\operatorname{Cl}_2 \operatorname{Cl}_2} \xrightarrow{\operatorname{NaOH}} \operatorname{Na_2Cr}_{(B)} O_4 \xrightarrow{\operatorname{H_2O_2}}_{\operatorname{H^{\oplus}}} O_4 \xrightarrow{\operatorname{H_2O_2}}_{\operatorname{H^{\oplus}}} O_4 \xrightarrow{\operatorname{NaOH}} O_4 \xrightarrow{\operatorname{NaOH}}_{\operatorname{H^{\oplus}}} O_4 \xrightarrow{\operatorname{NaOH}} O_4 \xrightarrow{\operatorname{NaOH}}_{\operatorname{H^{\oplus}}} O_4 \xrightarrow{\operatorname{NaOH}} O_4 \xrightarrow{\operatorname{NaOH}}_{\operatorname{H^{\oplus}}} O_4 \xrightarrow{\operatorname{NaOH}} O_4 $	CrO ₅ ///.			
	${ m CrO_2Cl_2} ightarrow 5$, and the mathematical mat				
	${ m CrO}_5 ightarrow 6, { m Total} = 18$				
51.	$ar^5=4\left(ar^3 ight) \Rightarrow r^2=4 \Rightarrow r=2$				
	$a(2)^8 - a(2^6) = 192 \Rightarrow a = 1$ (3) $S_n - S_3 = 1016$				
	$(2^n-1)-(1+2+4)=1016$ $2^{10}=1024\Rightarrow n=10$				
52. ///.	(2) (i) $-1 \le 2x - x^2 \le 1$ (for sin ⁻¹ to be defined $\Rightarrow -1 \le x^2 - 2x \le 1$	l) ngo ///.			
	i.e. $x^2 - 2x + 1 \ge 0$ and $x^2 - 2x - 1 \le 0$ $(x - 1)^2 \ge 0$ and $(x - 1)^2 - (\sqrt{2})^2 \le 0$				
	$\mathbf{x} \in \mathbf{R} \text{ and } \left(\mathbf{x} - 1 - \sqrt{2}\right) \left(\mathbf{x} - 1 + \sqrt{2}\right) \leq 0$ $\Rightarrow \mathbf{x} \in \left[1 - \sqrt{2} + \sqrt{2}\right] = (1)$				
	$ \begin{array}{l} \Rightarrow \mathbf{x} \in \begin{bmatrix} 1 & \sqrt{2}, 1 + \sqrt{2} \end{bmatrix} \dots (1) \\ (\text{ii}) \ 2 - \frac{1}{ \mathbf{x} } \ge 0 \Rightarrow \frac{1}{ \mathbf{x} } \le 2 \Rightarrow \mathbf{x} \ge \frac{1}{2} \Rightarrow \mathbf{x} \in \left(-\frac{1}{2}\right) \\ \text{integral} \mathbf{x} \in \left(-\frac{1}{2}\right)$	$-\infty, -\frac{1}{2}$]L	$ \int \left[\frac{1}{2},\infty\right)\dots(2) $		
	(iii) $[\mathbf{x}^2] \neq 0 \Rightarrow \mathbf{x}^2 \notin [0,1)$ $\Rightarrow \mathbf{x} \notin (-1,1) \Rightarrow \mathbf{x} \in (-\infty, -1] \cup [1,\infty) \dots (3)$				
	Hence, $(1) \cap (2) \cap (3)$ $\Rightarrow \mathbf{x} \in \left[1, 1 + \sqrt{2}\right]$ methongo \swarrow metho				
53.	(4) Let X denotes the number of tosses required. $P(X > 4) = \left(\frac{2}{2}\right)^3 \cdot \frac{1}{2} + \left(\frac{2}{2}\right)^4 \cdot \frac{1}{2} + \left(\frac{2}{2}\right)^5 \cdot \frac{1}{2} = \frac{1}{2}$	ngo ///. + x	$=\frac{\left(\frac{2}{3}\right)^3 \cdot \frac{1}{3}}{\frac{1}{3}} = \frac{8}{3}$	//. mathongo	
	$P(X \ge 7) = \left(rac{2}{3} ight)^6 \cdot rac{1}{3} + \left(rac{2}{3} ight)^7 \cdot rac{1}{3} + \ldots \infty =$	$\left(\frac{\left(\frac{2}{3}\right)^6 \cdot \frac{1}{3}}{1-\frac{2}{3}}\right)$	$\left(\frac{1-\frac{2}{3}}{2}\right)^{6} = \left(\frac{2}{3}\right)^{6}$		
	Required probability = $\frac{\left(\frac{2}{3}\right)^6}{(x)^3} = \frac{8}{27}$ mathe		mathongo		
///. 54.	$(1) \lim_{x o 0} \left\{ 1 + x \log(1 + a^2) \right\}^{1/x}$				
	$egin{aligned} &=2a\sin^2 heta, a>0 ext{ and } heta\in R \ &\lim_{x o 0}ig\{1+x\logig(1+a^2ig)ig\}^{1/x} ext{ is of the form }1^\infty \ &=e^{\lim_{x o 0}rac{1}{x}ig\{1+x\log(1+a^2)-1ig\}}=e^{\lim_{x o 0}\log(1+a^2)}=e^{\lim_{x o 0}rac{1}{x}igg(1+a^2igg)} \end{aligned}$	ngo $//$ $1 + a^2$			
	$\Rightarrow 1 + a^2 = 2a\sin^2 heta \Rightarrow a^2 - 2a\sin^2 heta + 1 = 0$)			

MathonGo

Are You JEE Ready (AYJR)

MathonGo

$\Rightarrow a = rac{2\sin^2 heta\pm\sqrt{4\sin^4 heta-4}}{2}$				
$a = \frac{2 \sin^2 \theta \pm \sqrt{4 \left(\sin^4 \theta - 1\right)}}{2}$				
$a = \sin^2 \theta \pm \sqrt{\sin^4 \theta - 1}$				
$\sin^{2} \theta - 1 \ge 0$ $\Rightarrow \sin^{4} \theta = 1 \qquad \text{mathongo} \qquad //$ $\sin^{2} \theta = 1 \sin^{2} \pi$				
$ \Rightarrow \theta = n\pi \pm \frac{\pi}{2} $ mathematical (1)				
55. (2) Given, $f(x + y) = f(x) \cdot f(y)$ $\therefore f(x) = a^x$				
$f(1)=a^{\mathrm{l}}=2\Rightarrow a=2$ $\therefore f(x)=2^{x}$				
Area enclosed by the lines $2 x + 5 y \le 4\left(\frac{1}{2} \times 2 \times \frac{4}{5}\right) = \frac{16}{5}$	4 is mathongo			
///. mathongo ///. mathon¥o ///.				
/// mathongo /// mat0, 4/5				
mathongo mathongo	mathongo			
W Xrithonso / mathor o //		Xmathongo		
-2,0 /// mathongo /// pathongo ///	mathongo	//. mathongo		
/// mathongo /// matho	mathongo 4/5			
//. mathongo //. mathory //.	mathongo			
$\mathbf{Y'} = \frac{16}{1+(2)^2} = \frac{(2)^4}{1+(2)^2} = \frac{f(4)}{1+f(2)}$				
56. (3) Let $z = x + iy$ mathematical integral integra				
III. III. III. III. III. mathongo III. mathongo				

Are You JEE Ready (AYJR)

MathonGo

	3 (x - 12) + yi = 5 x + (y - 8)i //	mathongo	///. m — 6	mathongo			
	$9 \cdot 36 + 9y^{2} = 25 \cdot 36 + 25 \left[y^{2} + 64 - 16y^{2} - 25 \cdot 16y + 36 \cdot 16 + 25 \cdot 64 = 0\right]$	16y	μ — (//.	mathongo			
	$y^{2} - 25y + 36 + 100 = 0$ $y^{2} - 25y + 136 = 0$	mathongo					
	(y-17)(y-8) = 0 then, $y = 17$ or $y = 8$						
57.	(4) Since the ellipse contains the circle						
	: Solving circle with ellipse, we get $b^2x^2 + a^2(1 - (x - 1)^2) = a^2b^2$						
	$ig(b^2-a^2ig) x^2+2a^2x-a^2b^2=0$ /// D=0						
	$egin{array}{llllllllllllllllllllllllllllllllllll$						
	$a^2-b^2\left(a^2e^2 ight)=0$ $1=b^2e^2\Rightarrow be=1$						
	Now,						
	area of ellipse, $A = \pi a b$ $A^2 = \pi^2 a^2 b^2$						
	$e^2 = 1 - \frac{b^2}{a^2} = \frac{1}{b^2}$ mathematical ///						
	$e^2 = 1 - \frac{1}{b^2} = \frac{b^2}{a^2}$ mothen go ///						
	$a^2 = \frac{b^*}{b^2 - 1}$ methongo methongo						
	$A^2 = f(b) = \frac{b^6}{b^2 - 1}$ mathongo ///						
	For maxima and minima $f'(b) = 0$ $(b^2 - 1) 6b^5 - b^6(2b) = 0 \Rightarrow 3(b^2 - b^6(2b)) \Rightarrow 3(b^6 - b^6(2b)) \Rightarrow 3(b^2 - b^6(2b)) \Rightarrow 3(b^6 - b^6(2b)) \Rightarrow 3(b$	$-1)=b^2$ ngo					
	$b^2 = rac{3}{2}; \therefore a^2 = rac{9}{2}$ $\therefore a^2 + b^2 = rac{9}{2} + rac{3}{2} = 6 = 2n$	\Rightarrow $n=3$					
58.	Let $\left(\frac{x}{2}, \frac{x}{2}, \frac{y}{3}, \frac{y}{3}, \frac{y}{3}, \frac{y}{3}, \frac{z}{4}, \frac{z}$)nathongo					
	(2) $\therefore \text{GM} \leq \text{AM}$ $(2) \qquad \qquad$						
	$egin{array}{ccc} & & & \ & & \ & & \ & & \ & \ & \ & \ $						
59.	(3) $\left \mathrm{A}\right ^{2^4} = (2 \times 5)^{16} \Rightarrow \left \mathrm{A}\right = \pm 10$						
	$\therefore \mathrm{A} = x + y + z, ext{ where } x, y, z \in \mathrm{N}$						

Are You JEE Ready (AYJR)

MathonGo

	$\therefore x + y + z = 10$ mathenge									
	\therefore number of solutions = ${}^{10-1}C_{3-1}$ =	= ⁹ C	$C_2 = \frac{9 \times 8}{2} = 36$							
60.	$ec{a}=x\hat{i}+y\hat{j}+z\hat{k},$ $ec{b}=y\hat{i}-\hat{b}$	$2\hat{zj}$	$+ 3x \hat{k}, ec{c} = 2$	$2z\hat{i}$ +	$-3x\hat{j}-y\hat{k}.$					
	(4) $ec{a}\cdotec{d}=0, ec{d}=\hat{i}-\hat{j}+2\hat{k}.$									
	$(4) x - y + 2z = 0. \dots (1)$									
	$ ec{a} = 2\sqrt{3}, x^2 + y^2 + z^2 = 1$	2.	$\dots (2)$							
	From (1), $x = y - 2z$. Substituting $(y - 2z)^2 + y^2 + z^2 = 12$	into	(2):athongo							
	$2y^2 - 4yz + 5z^2 = 12$ (3) Let $z = 2$, substituting into (3):									
	$2y^2 - 8y + 20 = 12$ $y^2 - 4y + 4 = 0, y = 2.$									
	From (1), $x = -2$.									
	$a \cdot b = xy - 2yz + 3zx$		nathongo							
	$\vec{a} \cdot \vec{b} = (-2)(2) - 2(2)(2) + 3(2)(4)$	-2)	= -24.							
61.	(1) In $\triangle ABC$		mathongo		mathongo		mathongo	· · · ·	mathongo	
	Equation of AB, BC and CA are 2:	x + y	y=0,x+py=	= q a	nd $x - y = 3$ re	spec	tively and $P(2,$	3) is	orthocentre.	
	A Mathongo	(1,	,-2)							
	mathongo 📶 mathong	$\langle \rangle$								
	mathongo 📶 mathrago	11.	mathongo							
	mathongo 🥂 m thongo		mothongo							
	mathongo		A'	<i></i>						
	mathongo	\langle	P(2,3)	11.						
	mathon o mathongo	11.	mango		mathongo					
	B mathongo	- <u>7</u> .	mathongo							
	mathongo	x+	∋y=q mathongo		mathongo					

Are You JEE Ready (AYJR)

MathonGo

	Solving $2x + y = 0$ and $x - y = 3$ motions $2x + y = 0$ and $x - y = 3$					
	y = -2x and $x + 2x = 3\Rightarrow 3x = 3\Rightarrow x = 1, y = -2\therefore 4(1, -2)$					
	Slope of $AP = \frac{3 - (-2)}{2 - 1} = 5$					
	Slope of $BC = -\frac{1}{p}$ mathematic matrix					
	$ \begin{array}{c} AP \perp BC \\ \Rightarrow 5 \times \left(-\frac{1}{p}\right) = -1 \end{array} $					
	p = 5 Now for vertex B					
	2x + y = 0, y = -2x x + 5y = q mathematication q 2q mathematication q 2q					
	$x - 10x = q \Rightarrow x = -rac{1}{9}, y = rac{1}{9}$ $B ext{ is } \left(-rac{q}{2}, rac{2q}{2} ight)$					
	Slope of $BP = \frac{\frac{2q}{9} - 3}{\frac{2q}{9} - 3} = \frac{2q - 27}{2}$					
	Slope of $AC = 1$					
	$BP \perp AC \Rightarrow \left(\frac{q-27}{-q-18}\right)(1) = -1$ $\Rightarrow 2q-27 = q+18$					
	2q - q = 18 + 27 q = 45					
62.	$p+q=5+45=50 onumber \ I=2 \int^1 \left(an^{-1} \left[x^2 + rac{1}{2} ight] + ext{cot}^{-1} \left[x^2 - rac{1}{2} ight]$	$\left[\frac{1}{2}\right] dx$				
	(4) $\int_{0}^{1/\sqrt{2}} \left(\tan^{-1} 0 + \cot^{-1}(-1) \right) dx$	$\int_{1/\sqrt{2}}^{1} (\tan^{-1} d)$	$1+\cot^{-1}0ig)dx$	$=\frac{3\pi}{2}$ athong		
63	(3) For observations m. m.		mathongo	// mathona		
05.	Mean $\bar{x} = \frac{\sum x_i}{16} = 16$ (i)					
	Variance, $\sigma^2 = \frac{\sum x_i^2}{50} - (\bar{x})^2 = 16^2$					
	$\Rightarrow rac{\sum x_i^2}{50} = 16^2 + \left(ar{x} ight)^2 = 16^2 + 16^2 = 512 \dots$	(ii) //.				
	So, the mean value of $(x_1 - 4)^2$, $(x_2 - 4)^2$,	$\ldots (x_{50} -$	$4)^2$ will be			
	$= \frac{\sum (x_i - 4)^2}{50} = \frac{\sum x_i^2 - 8\sum x_i + 16 \times 50}{50}$ moth					
	$=rac{2 \sum x_i}{50} - 8rac{2 x_i}{50} + 16 = 512 - 8 imes 16 + 16 =$	400 (using (i) and (ii))			
64.	(2) $\frac{1}{1+y^2} \cdot \frac{dy}{dx} + 2x \left(\tan^{-1} y \right) = x^3$					

Put
$$\tan^{-1} y = z$$

Are You JEE Ready (AYJR)

MathonGo

	$\frac{1}{1+y^2} \cdot \frac{dy}{dx} = \frac{dz}{dx}$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo	
	$\frac{dz}{dz} + (2x)z = x^3 \implies z \cdot e^{x^2} = \frac{1}{2}\int 2e^{x^2} \cdot x^3 dx + c$	
	dx + (-x)/t = t mathongo dx mathongo d	
	$\Rightarrow \left(an^{-1} y ight) e^{x^2} = rac{1}{2} \int e^t \cdot t dt + c$	
	$\Rightarrow e^{x^2} \left(\tan^{-1} y \right) = \frac{1}{2} \left\{ e^t \cdot t - e^t \right\} + c mathematical mathmatical mathematical mathematical mathem$	
	$\Rightarrow 2e^{x} \tan^{-1} y = x^{2}e^{x} - e^{x} + 2c$ $\Rightarrow 2\tan^{-1} y - x^{2} - 1 + 2ce^{-x^{2}}$	
65	$-\frac{1}{2} \int dd \mathbf{r} = \frac{1}{2} \int dd \mathbf{r} = \frac{1}{2} \int dd \mathbf{r}$	
03.	(2) $y_{1} = \frac{1}{2} $	
	Point of intersection of lines $x = y = z$ and $x = \frac{1}{2} = \frac{1}{3}$ is (0, 0, 0)	
	Angle between lines is $\cos \theta = \frac{(1)(1)(1)(2)+(1)(3)}{\sqrt{1+1+1}\sqrt{1+2^2+3^2}} = \frac{6}{\sqrt{42}}$	
	$\Rightarrow \sin \theta = \frac{\sqrt{6}}{2}$ mathongo mathongo mathongo mathongo mathongo mathongo mathongo	
	$\sqrt{42}$	
	Let a point on line $x = \frac{1}{2} = \frac{1}{3}$ is $A(\lambda, 2\lambda, 3\lambda)$	
	x = y = z passes through $B(1, 1, 1)$ and third line also passes through $B(1, 1, 1)$	
	$\therefore \text{ Area of } \Delta OAB = \frac{1}{2}OA. OB \sin \theta = \frac{1}{2}\sqrt{3} \lambda \sqrt{14} \frac{\sqrt{6}}{\sqrt{42}} = \sqrt{6}$	
	$\therefore \lambda = 2$	
	\therefore Required coordinate = (2, 4, 6). mathematical mathem	
66.	(4)	
	For any relation R defined on set A is said to be reflexive if $(a, a) \in R \ \forall \ a \in A$, symmetric if	
	$(a,b) \in R \Leftrightarrow (b,a) \in R \ \forall \ a, \ b \in A \text{ and transitive if } (a,b) \in R, \ (b,c) \in R, \text{ then } (a,c) \in R \text{ for all } a, \ b, \ c \in A.$	
	Given, and the mathematical and the	
	$ig(\mathrm{x},\mathrm{y}) \Leftrightarrow \mathrm{x}^2 - 8\mathrm{x}\mathrm{y} + 7\mathrm{y}^2 = 0$	
	So, athongo /// mathongo /// mathongo /// mathongo /// mathongo	
	$(\mathbf{x},\mathbf{x}) \Leftrightarrow \mathbf{x}^2 - 8\mathbf{x} \times \mathbf{x} + 7\mathbf{x}^2 = 0$, this is true. So, the relation is reflexive.	
	Again, $(y, x) \Leftrightarrow y^2 - 8xy + 7x^2 \neq x^2 - 8xy + 7y^2$	
	Hence, the relation is not symmetric.	
	Again,	
	$(\mathbf{x},\mathbf{y}) \Leftrightarrow \mathbf{x}^2 - 8\mathbf{x}\mathbf{y} + 7\mathbf{y}^2 = 0(1) \& (\mathbf{y},\mathbf{z}) \Leftrightarrow \mathbf{y}^2 - 8zy + 7\mathbf{z}^2 = 0(2)$	
	So, from the equation (1) & (2), we cannot determine	
	$xRy \& yRz \Rightarrow xRz \Leftrightarrow \mathrm{x}^2 - 8xz + 7\mathrm{z}^2 = 0$	
	So, the relation is not transitive.	

Are You JEE Ready (AYJR)

MathonGo

67. mathong $\left(\frac{1}{x}; \text{nathonif } x^2 \right)$	>1 \Rightarrow x $<$ -1 o	$\mathbf{r} \mid x > 1$ othongo		
$f(x)=\left\{ egin{array}{c} ax^3+bx^2; & ext{ if } 0\leq 1 \end{array} ight.$	$x^2 < 1 \Rightarrow -1 < x^2$	c < 1		
$\left(\frac{1/x+ax^3+bx^2}{2}; \circ \text{ if } x^2; \right)$	$\underline{=}_1$ mathongo			
\therefore f is continuous				
///. m.: horat $x = 1$ $1 = a + b ($	1) mathongo			
(3) and at $x = -1$				
$//. \text{me:} b = 0 / \frac{-1 = -a + b}{\cdot} \dots $	2) and a = 1			
\therefore point A and B are $=(-$	(-1, 3) and $(1, -1).$			
$g'(x) = \lambda(x-1)(x+1)$				
$g(x)=\lambda\left(rac{x^3}{2}-x ight)+c$				
///. mathongo				
$q(-1) = \frac{2\lambda}{2\lambda} + c = 3$ (3)				
$\begin{array}{c} g(1) = 3\\ \text{mathongo} \\ 3\\ \text{mathongo} \end{array}$				
$g(1)=-rac{2\lambda}{3}+c=-1$				
$c=1$ and $\lambda=3$				
g(x) = x - 5x + 1 g(2) = 3				
$(n_2 - n_1)^2 - (n_2 - n_1)^2$				
$(p_2 - p_1) = (q_2 - q_1)$ $\Rightarrow (p_2 + p_1)^2 - 4p_1 p_2 - (q_2 + q_1)$	$(a_1)^2 - 4a_1a_2$			
$\rightarrow (p_2 + p_1) \qquad \Rightarrow p_1 p_2 - (q_2 + p_1) \qquad \Rightarrow (p_2 + p_2) \qquad \Rightarrow (p_2 + p_1) \qquad \Rightarrow (p_2 + p_1) \qquad \Rightarrow (p_2 + p_2) \qquad \Rightarrow (p_2 + p_1) \qquad \Rightarrow (p_2 + p_2) \qquad \Rightarrow $	$\begin{pmatrix} q_1 \end{pmatrix}^2$			
$(1) \Rightarrow \left(\frac{-3}{a}\right) - 4\left(\frac{3}{a}\right) = \left(\frac{-3}{c}\right)$	$-4\left(\frac{a}{c}\right)$			
$b^2 - 4ac \ b^2 - 4ac$	///. mathongo			
$a^2 = \frac{c^2}{c^2}$				
Since $b^2 - 4ac$ is the discriminant c	of both the equation	s and roots are different	mathongo	
$\therefore 0^{\circ} \neq 4ac$ $\therefore a^2 = a^2$				
$a^{-} = c$ $\Rightarrow a = c$ (Not possible because two	quadratic equation	s become identical)		
or $\mathbf{a} = -\mathbf{c}$	1 1	,		
$///. \Rightarrow \frac{a}{c} = -1$ o ///. mathongo				
69. (3) Case (1): $d = 7$				
$^{6}C_{3} \times ^{3}C_{3} = 20$ mathematic				
Case (2): $d = 8$				
$^7C_3 imes {}^4C_3 = 140$ mathematic				
Case (3): $d = 9$				
$^{8}C_{3} imes^{5}C_{3}=560$ methodo				
Total = 20 + 140 + 560 = 720				

Are You JEE Ready (AYJR)

MathonGo

Questions with Ans	swer Keys 8	Solutions
--------------------	-------------	------------------

70. $f(x) = x^4 - 4x^3 - 8x^2 + a$ $f'(x) = 4(x^3 - 3x^2 - 4x)$								
$4x (x^2 - 3x - 4) = 4x(x - 4)(x + 1) = 0$) at $x = -1, 0, 4$							
(2) $f(-1) = a - 3 \le 0, a \le 3$ $f(0) \ge 0 \Rightarrow a \ge 0$ $a \in [0, 3]$	///. mathongo							
Sum = $0 + 1 + 2 + 3 = 6$								
71. (53) We have $AB = \begin{bmatrix} 1 & \frac{3}{2} \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \end{bmatrix}$	$\begin{bmatrix} -3 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	= I //.						
$(AB)^{1}C_{1} = C_{1}, (AB)^{2}C_{2} = C_{2}$ and so on.								
$\mathrm{tr}(C_r) = r \cdot 3^r + (1-r) \cdot 3^r = 3^r \ \sum_{\mathrm{r}=1}^{50} \mathrm{tr}((\mathrm{AB})^\mathrm{r}\mathrm{C_r}) = \mathrm{tr}ig((\mathrm{AB})^\mathrm{1}\mathrm{C_l}ig)$	$+ \operatorname{tr}((AB)^2C_2) +$	<i></i>	$\operatorname{mathongo} \ldots + \operatorname{tr}((AB)$	$^{50}\mathrm{C}_5$	${ m math} { m ongo}_{0} = { m S} \left({ m Let} ight)$			
$S = { m tr}(C_1) + { m tr}(C_2) + \ldots + { m tr}(C_2)$ $S = 3^1 + 3^2 + \cdots + 3^{50}$	50) mathongo							
$\Rightarrow a = 3, b = 50$								
72. (81) Slope of $AC = 1$ nothing of $AC = 1$								
\Rightarrow								
Slope of $BD = -1$ mathematical								
\therefore Side length = 4								
\Rightarrow Diagonal length = $4\sqrt{2}$ on go								
Now, using parametric form, (i) Coordinates of C A :								
(I) Coordinates of C, A .								
P (3,7)								
mathon mathon o								
Mathongo Mathongo								

$$egin{aligned} &= \left(3\pm 2\sqrt{2}\cosrac{\pi}{4},7\pm 2\sqrt{2}\sinrac{\pi}{4}
ight) = (3\pm 2,7\pm 2) \ &= (5,9) ext{ and } (1,5) \end{aligned}$$

Are You JEE Ready (AYJR)

MathonGo

Questions with Answer Keys & Solutions

(ii) Coordinates of D, B: thongo /// mathongo /// mathongo /// mathongo /// mathongo /// $\left(3\pm 2\sqrt{2}\cos rac{3\pi}{4},7\pm 2\sqrt{2}\sin rac{3\pi}{4} ight)$ $=(3\pm 2,7\pm 2)$ = (1, 9) and (5, 5)So, we have: mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// $\mathrm{A}\equiv (x_1,y_1)=(1,5) ext{ and } \mathrm{B}\equiv (x_2,y_2)=(5,5)$ $\mathrm{C}\equiv(x_3,y_3)=(5,9) ext{ and } \mathrm{D}\equiv(x_4,y_4)=(1,9)$ methongo /// methongo /// methongo /// Now, $\frac{y_1y_2y_3y_4}{x_1x_2x_3x_4} = \frac{5 \times 5 \times 9 \times 9}{1 \times 5 \times 5 \times 1} = 81$ **73.** (9) $27^{40} = (3^3)^{40} = 3^{120}$ thongo /// mathongo /// mathongo /// mathongo /// mathongo $3^{119} = \left(4-1 ight)^{119}$ $= C_0 4^{119} - C_1 4^{118} + C_2 4^{117} - \dots + C_{118} 4 - C$ /// mathongo /// mathongo /// mathongo /// = 4k - 1 $3^{120} = 3(4k-1) = 12k-3$ with mathematical states and the second states are seco = 12(k-1)+9So, the required remainder is 9. _____ mathongo /// mathongo /// mathongo /// mathongo /// **74.** (3) Unit vector (\hat{n}) perpendicular to OA and CB $\hat{n} = rac{\overrightarrow{ ext{CB}} imes \overrightarrow{ ext{OA}}}{|\overrightarrow{ ext{CB}} imes \overrightarrow{ ext{OA}}|} = rac{(3lpha - 7)\hat{ ext{i}} - 4\hat{ ext{j}} + (5 - lpha)\hat{ ext{k}}}{\sqrt{(3lpha - 7)^2 + 16 + (5 - lpha)^2}}$ $\overrightarrow{As CB} \times \overrightarrow{OA} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & \alpha - 3 & -1 \end{vmatrix}$ mathematical mathem Shortest distance = $|\overrightarrow{BA} \cdot \hat{n}| = \left| \frac{(7-3\alpha)-4(2-\alpha)+2(5-\alpha)}{\sqrt{(3\alpha-7)^2+16+(5+\alpha)^2}} \right|$ $=\sqrt{rac{3}{2}} \Rightarrow lpha = 3, lpha = rac{9}{7}$ thongo /// mathongo /// mathongo /// mathongo /// **75.** (2) $2 + \int_2^x f(t) dt = \frac{x^2}{2} + \int_x^2 t^2 f(t) dt$ 📶 mathongo 📶 mathongo 📶 mathongo 📶 mathongo 🥖 Differentiating w.r.t. x, we get $f(x)\left(1+x^2 ight)=x\Rightarrow f(x)=rac{x}{1+x^2},$ which is an odd function. Now $\int_{-x/4}^{\pi/4} \frac{f(x) + x^9 - x^3 + x + 1}{\cos^2 x} dx$ and hence $\frac{\pi}{4}$ mathematical $\frac{\pi}{4}$ mathematica = 0 + 2mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///.