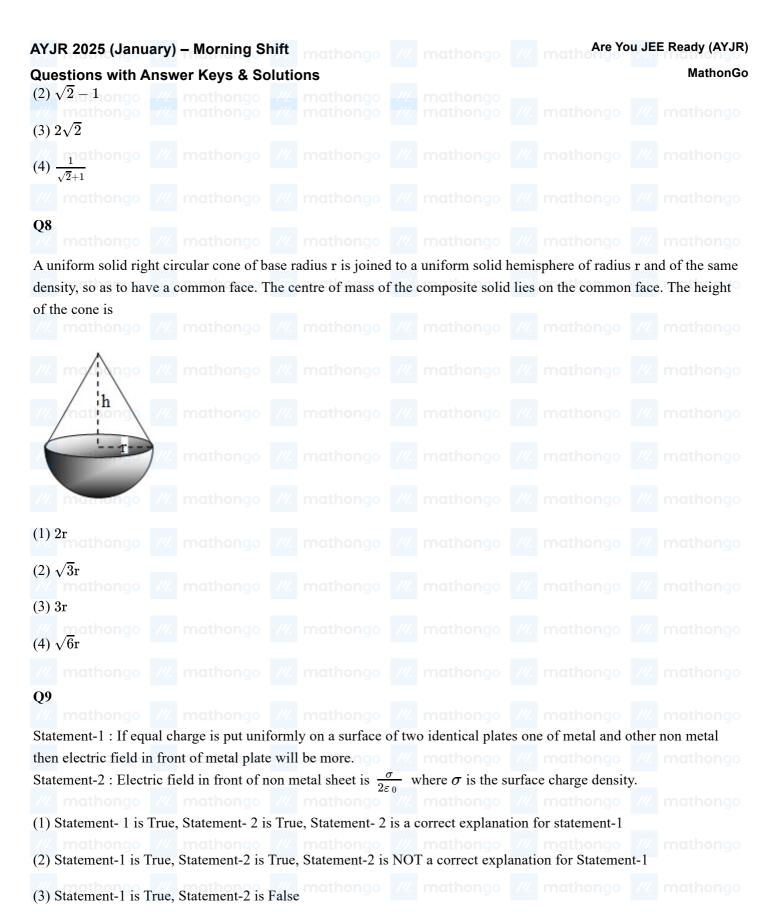

Questions with Answer Keys & Solutions Q1 mathongo /// mathongo /// mathongo /// mathongo /// mathongo A circuit consists of three identical lamps connected to a battery as shown in the figure. When the switch S is closed then the intensities of lamps A and B S (1) will increase by eight times (2) will decrease by two times (3) will increase by more than two times (4) will remain the same O_2 Select the dimensional formula of $\frac{B^2}{2\mu_0}$ $(1) \left[\mathbf{M}^1 \mathbf{L}^1 \mathbf{T}^2 \right]$ (2) $[M^{-1}L^1T^2]$ (3) $\left[M^{-1}L^{-1}T^{-2} \right]$ (4) $M^1L^{-1}T^{-2}$

In the figure there is a DC voltage regulator circuit, with a Zener breakdown voltage = 6 V. If the unregulated input voltage varies between 10 V to 16 V, then what is the maximum Zener current?



The pressure on a circular plate is measured by measuring the force on the plate and the radius of the plate. If the errors in measurement of the force and the radius are 5% and 3% respectively, the percentage of error in the measurement of pressure is

- (1) 8
- (2) 14

A, B, C are points on a vertical line such that AB = BC. If a body is dropped from rest at A, and t_1 and t_2 are the time to travel for distance AB and BC, then ratio $\left(\frac{t_2}{t_1}\right)$ is

$$(1)\sqrt{2}+1$$

(4) Statement-1 is False, Statement-2 is True

MathonGo

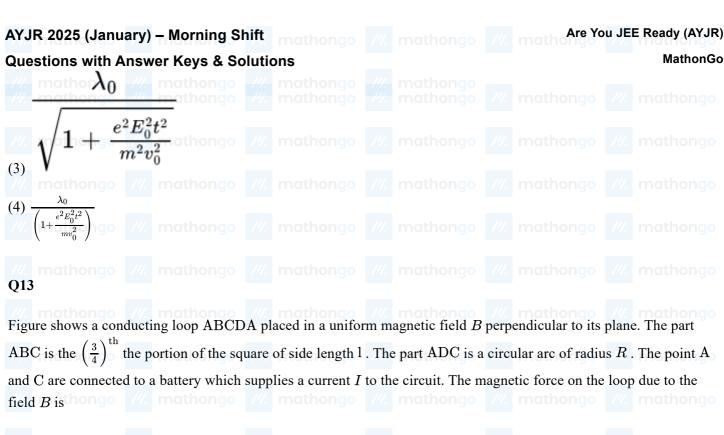
A block of mass m is placed at the lowest point of a smooth vertical track of radius R. In this position, the block is given a horizontal velocity u such that the block is just able to perform a complete vertical circular motion.

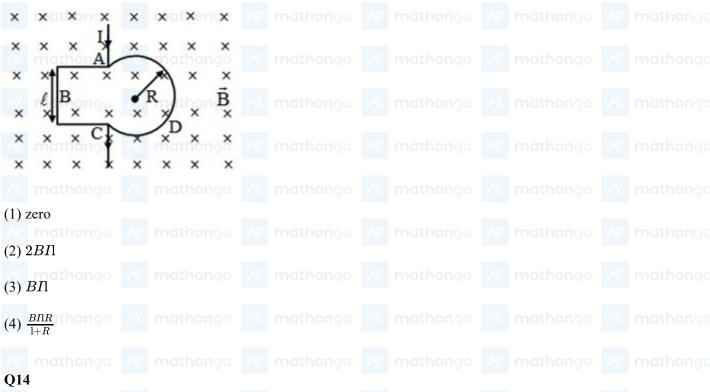
The acceleration of block, when its velocity is vertical is

A galvanometer of resistance 22.8 Ω measures 1 A. How much shunt should be used, so that it can be used to measure 20 A?

 $(1) 1 \Omega$

 $\frac{2}{2}$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo


(4) $2.2\,\Omega_{
m thongo}$ /// mathongo /// mathongo /// mathongo /// mathongo


Qı̃12 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

An electron of charge e and mass m moving with an initial velocity $v_0 \hat{i}$ is subjected to an electric field $E_0 \hat{j}$. The de-Broglie wavelength of the electron at a time t is (Initial de-Broglie wavelength of the electron = λ_0)

 $(1) \lambda_0$

(2)
$$\lambda_0 \sqrt{1 + \frac{e^2 E_0^2 t^2}{m^2 v_0^2}}$$

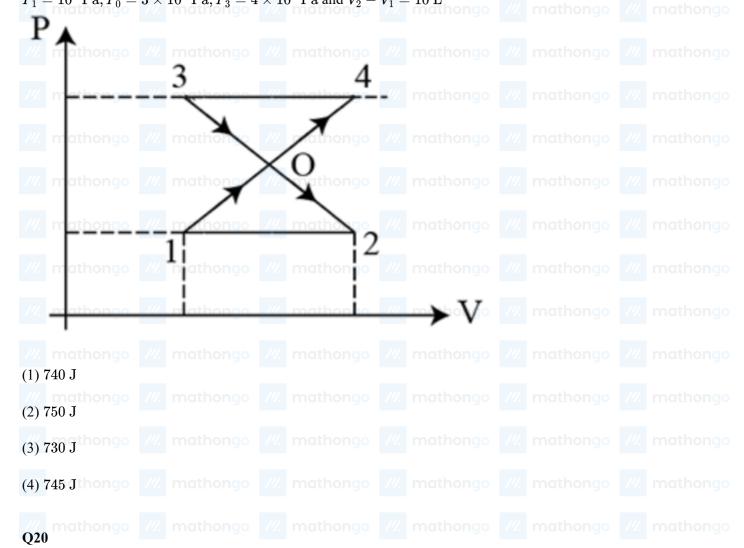
A spherical uniform planet is rotating about its axis. The velocity of a point on its equator is V. Due to the rotation of the planet about its axis the acceleration due to gravity g at equator is 1/2 of g at poles. The escape velocity of a particle on the planet in terms of V from the pole of the planet is

(1)
$$V_{\rm e} = 2V$$

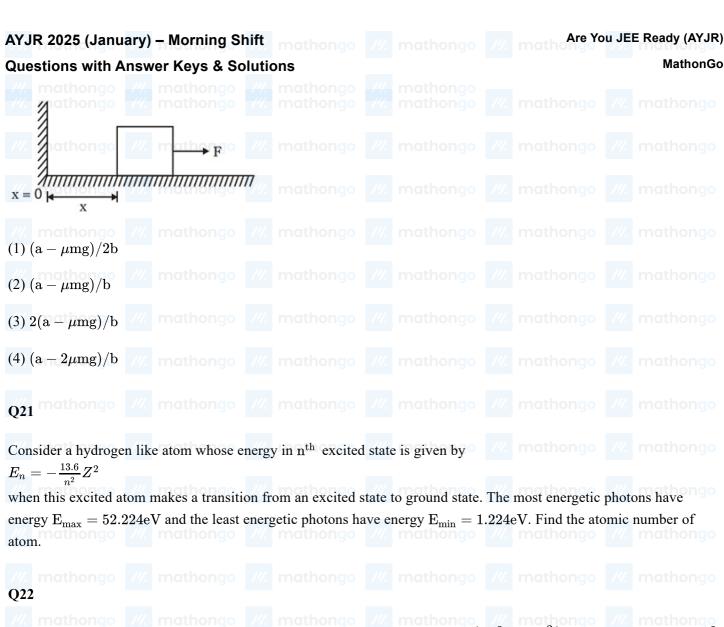
(2)
$$V_{\rm e} = V$$

(3)
$$V_{\rm e} = V/2$$

Q18


Assertion: When height of a tube is less than liquid rise in the capillary tube, the liquid does not overflow. Reason: Product of radius of meniscus and height of liquid in the capillary tube always remain constant.

MathonGo


- (1) If both assertion and reason are true and reason is the correct explanation of assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (3) If assertion is true but reason is false.
- (4) If both assertion and reason are false.

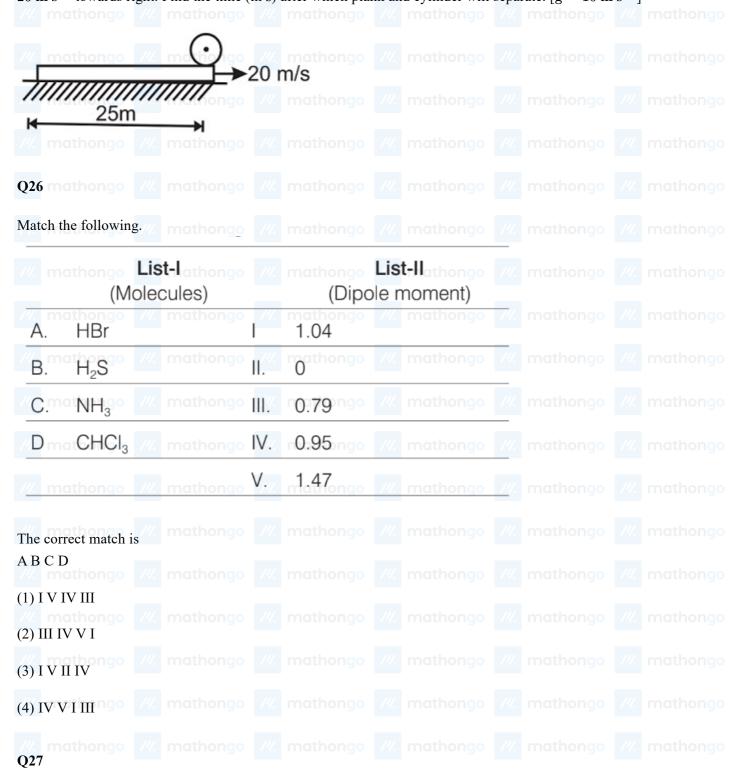
Q19

Determine the work done by an ideal gas undergoing a cyclic process from $1 \to 4 \to 3 \to 2 \to 1$. Given $P_1=10^5~\mathrm{Pa}, P_0=3 imes10^5~\mathrm{Pa}, P_3=4 imes10^5~\mathrm{Pa}$ and $V_2-V_1=10~\mathrm{L}$

The block of mass 'm' initially at x = 0 is acted upon by a horizontal force F = a - bx as shown in the figure. The coefficient of friction between the surfaces of contact is μ . The net work done on the block is zero if the block travels a distance of

The magnetic flux through metal ring varies with time t according to $\phi=3\left(\operatorname{at}^3-\operatorname{bt}^2\right)$ Wb. with $a=2\sec^{-3}$ and $b=6\sec^{-2}$. The resistance of the ring is 3Ω . Determine the maximum current induced in the ring during internal from t=0 to $t=2\sec$. (Mark absolute value as answer)

/// mathongo /// m


In Young's double-slit experiment, the two slits which are separated by 1.2 mm are illuminated with a monochromatic light of wavelength 6000 Å. The interference pattern is observed on a screen placed at a distance of 1 m from the slits. Find the number of bright fringes formed over 1 cm width on the screen.

Q24 mathongo ///. mathongo

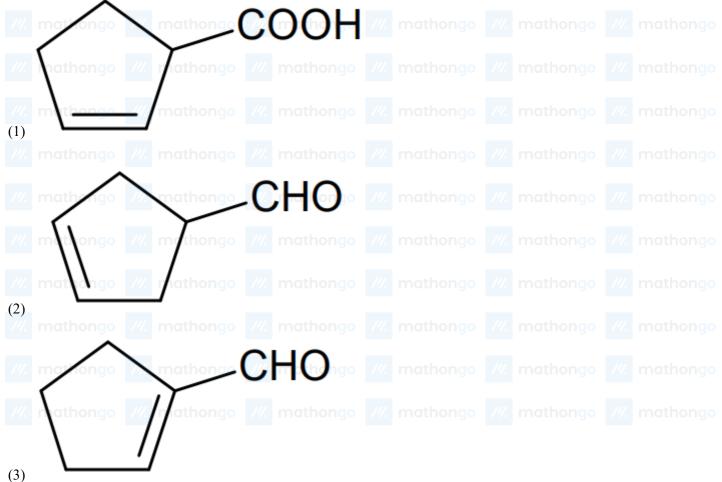
If two wires of same length l and area of the cross-section A with Young modulus Y and 2Y connect in series and one end is fixed on roof and another end with mass m make simple harmonic motion, then the time period is $2\pi\sqrt{\frac{Kml}{2YA}}$, find integral value of K.

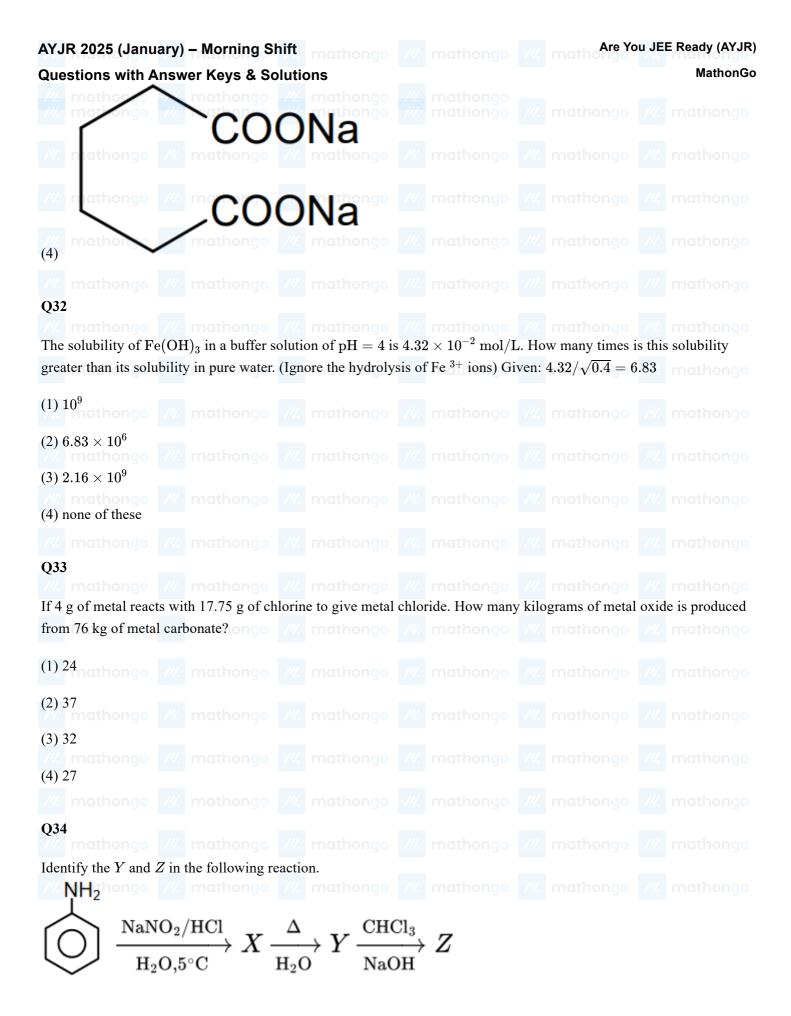
MathonGo

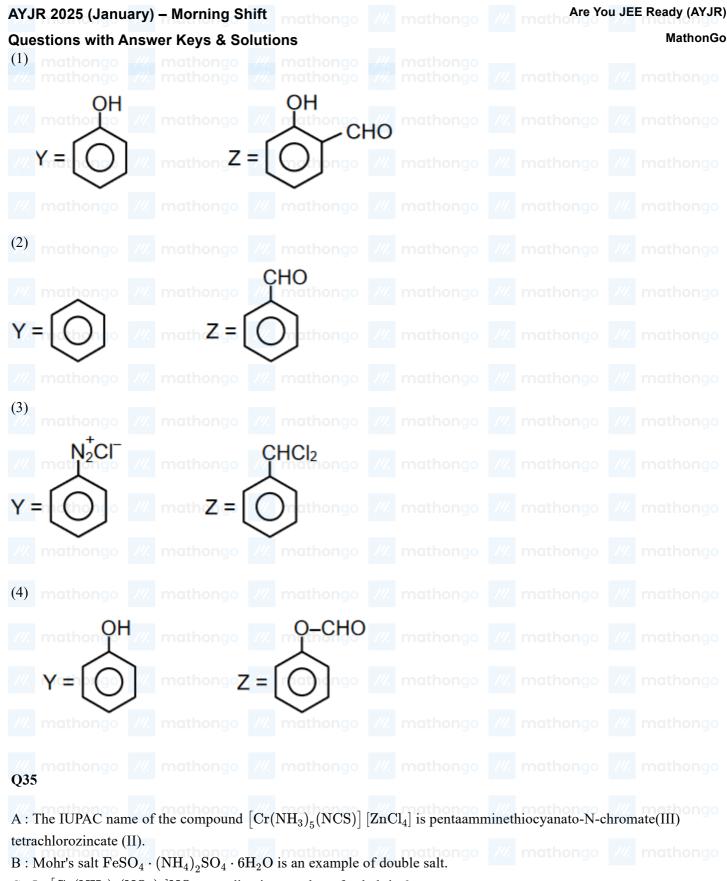
A solid cylinder is kept on one edge of a plank of same mass and length 25 m placed on a smooth surface as shown in the figure. The coefficient of friction between the cylinder and the plank is 0.5. The plank is given a velocity of 20 m s^{-1} towards right. Find the time (in s) after which plank and cylinder will separate. [g = 10 m s^{-2}]

Which of the following pair is expected to exhibit the same colour in solution?

 $(1) \text{ VOCl}_2$; ZnSO_4

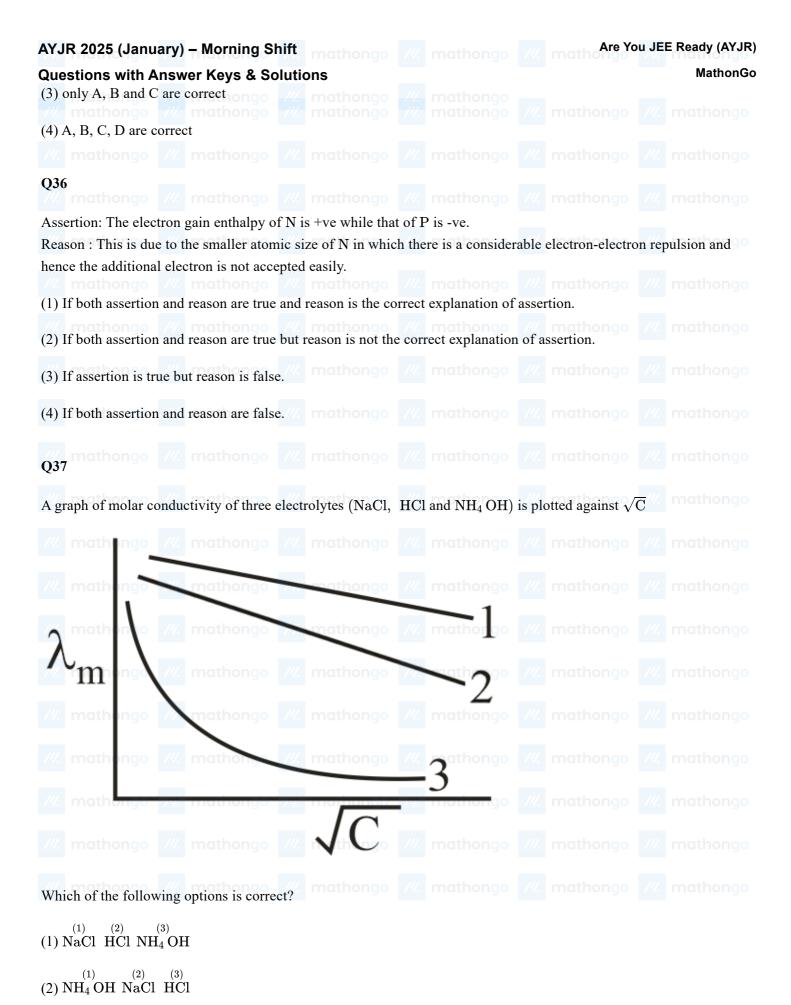

(2) MnCl₂; ZnSO₄

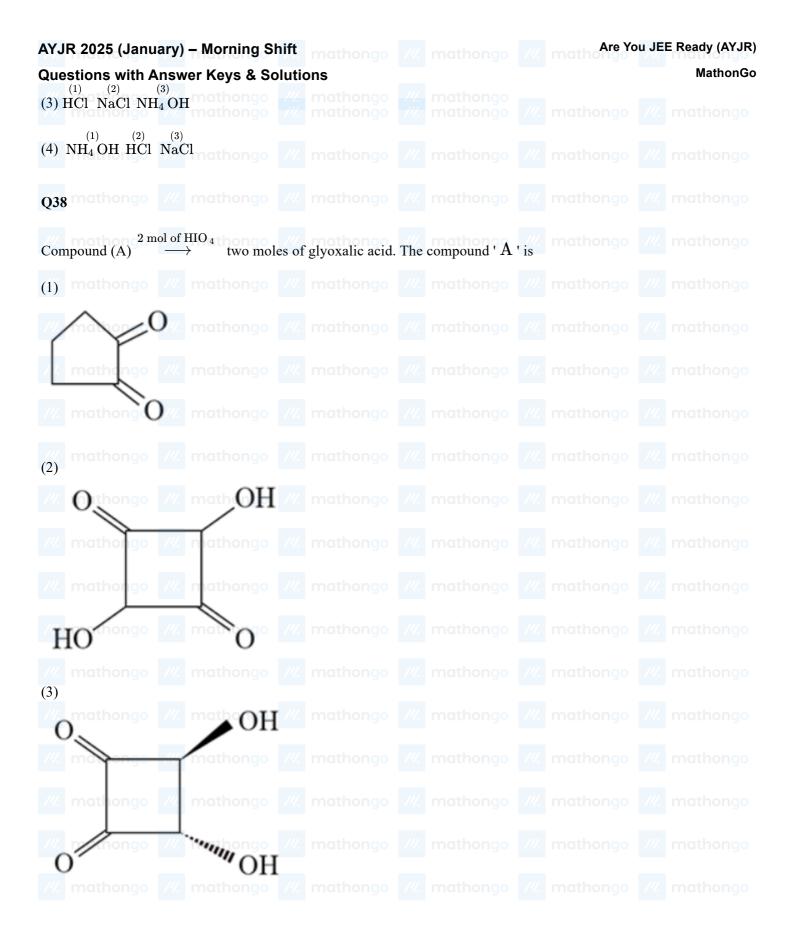


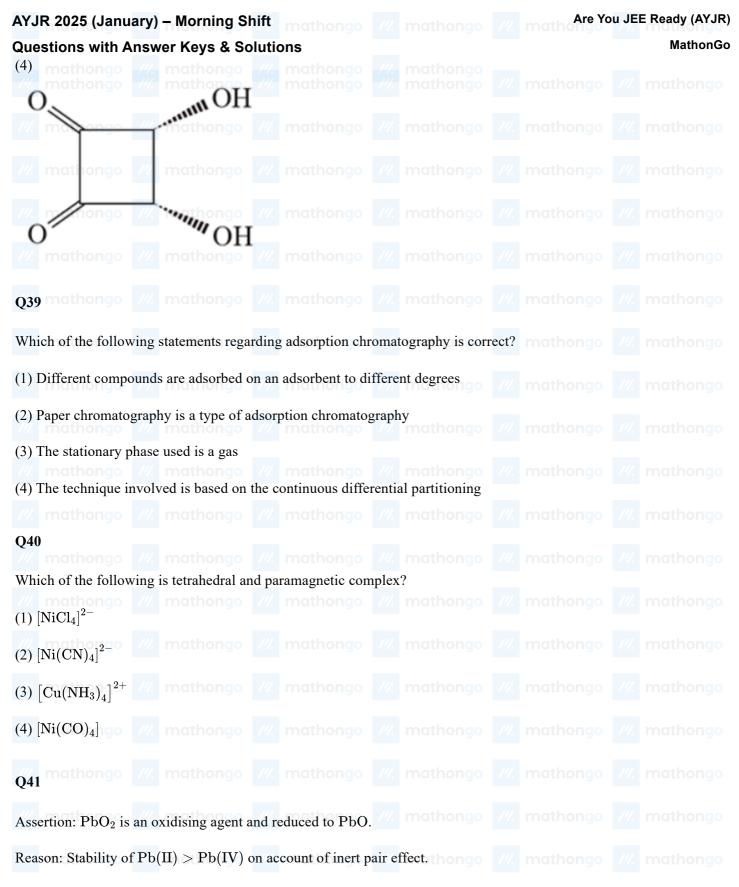

Q30

MathonGo

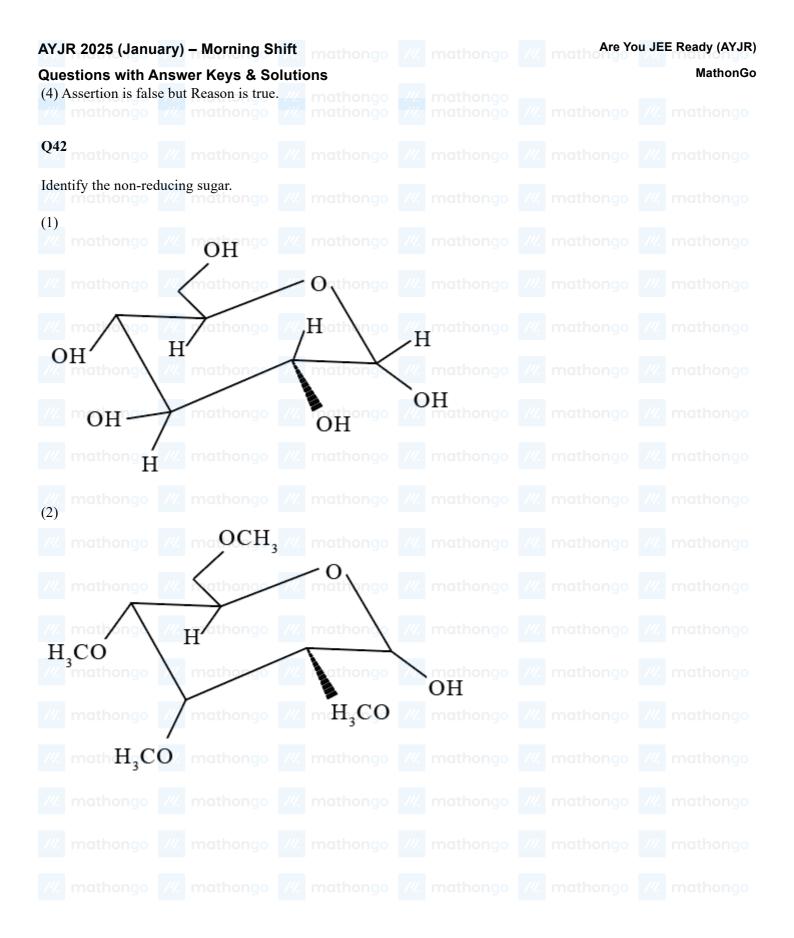
Which of the following sets is in the correct order regarding the property mentioned against them?											
///. mc	Sets								Propert	y ///	
Ī.	NCCH	$_2$ C	OOH > FCI	I_2 ($COOH > H_3$	$^{\circ}$ CC	${ m CH}_2{ m COOH}$		Acidity		
/II.mo	$\mathrm{CH}_3\mathrm{C}$	H_2	CHO > PhC	OC	$\mathrm{CH}_3 > \mathrm{PhC}_3$	НО			Reactive	ity	
III.	$ m H_3~COCH_2~CH_3~< H_3~CCH_2~CHO < H_3~CCH_2~CH$					OH	Boiling points				
///. mc	athongo								mathongo		
(1) I, II only											
(2) I, III only											
(2) II III	thongo										
(3) II, III	i only										
(4) I, II,	nipongo										
(1) =, ==,											
Q31											
//. mo		111.	mathongo		mathongo	14.	mathongo		mathongo		mathongo
Cyclohexene on ozonolysis followed by reaction with zinc dust and water gives compound B. Compound B on further											
treatment with aqueous NaOH followed by heating yields compound C. The compound 'C' is:											
	_										

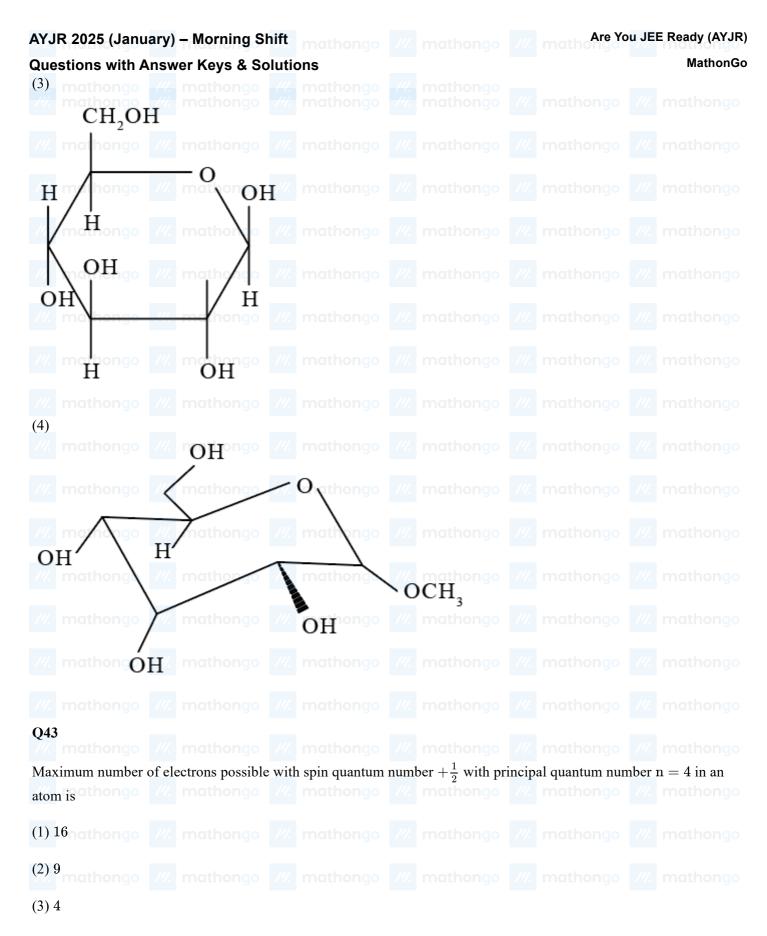


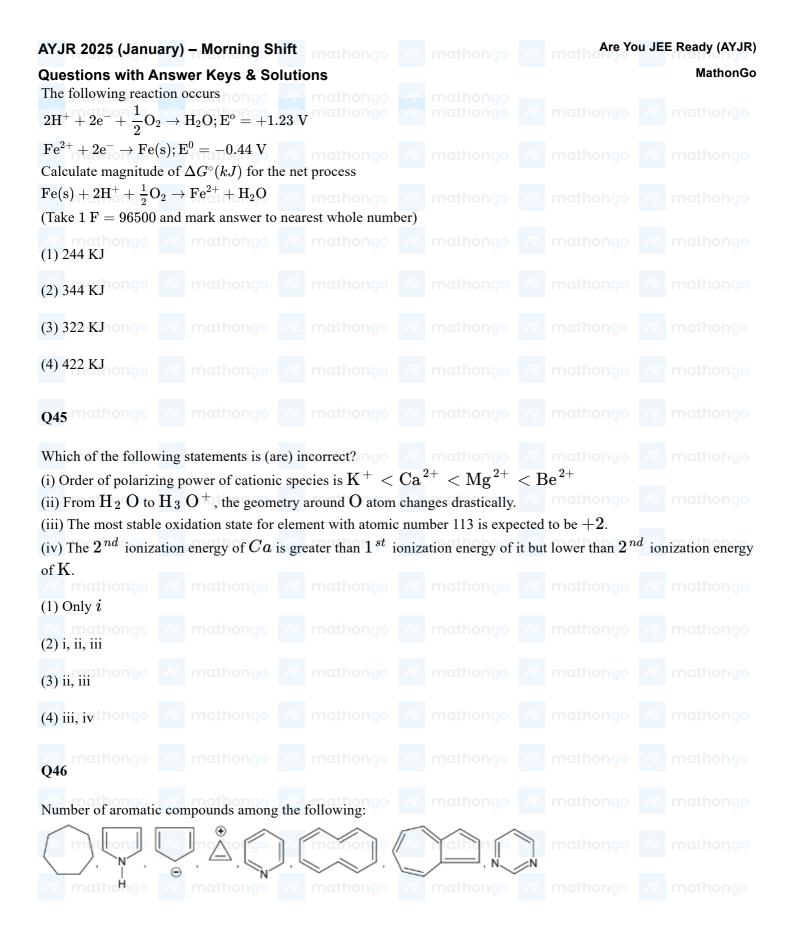



 $C: In \ \big[Co(NH_3)_4 (NO_2)_2] NO_3 \ coordination number of cobalt is 6$.

 $D: \text{In} \ [\text{Fe}(CO)_5] \ \text{secondary valency of iron is} \ 0$.


- (1) only B and D are correct
- (2) only B and C are correct





- (1) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- (2) Both Assertion and Reason are true but Reason is NOT the correct explanation of Assertion.
- (3) Assertion is true but Reason is false.

(4) 25

Q47

At T(K) if the rate constant for a zero order reaction is $2.5 \times 10^{-3} \text{ ms}^{-1}$, the time required for the initial concentration of reactant, R to fall from 0.10 M to 0.075 M at the same temperature in seconds is

is 1.86 K/ molal then calculate the amount of ice (in g) that separates out on cooling the above solution.

Calculate heat of atomization of furan in kJmol⁻¹ using the data

$$\Delta H_{f}^{\circ}() = -62.0 \text{ kJmol}^{-1}$$
mathong

Heats of atomization of C, H, O are 717, 218, 249 kJmol⁻¹ each isolated atom.

Q50 mathongo ///. mathongo ///. mathongo ///.

Consider the following reactions

 $NaCl + K_2Cr_2O_7 + Conc. H_2SO_4 \rightarrow (A) + side products$

 $(A)+NaOH \rightarrow (B)+ side products$

(B)+dilute $H_2 SO_4 + H_2O_2 \rightarrow (C)$ + Side products

The sum of atoms in one molecule each of (A), (B) and (C) is

For an increasing geometric sequence $a_1, a_2, a_3, \ldots, a_n$, if $a_6 = 4a_4 \& a_9 - a_7 = 192$ and $\sum_{i=4}^n a_i = 1016$, then n is

051 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

(1) 8 mathonao

(2) 9 mathongo

(3) 10

(4) 11

O52

The function $f(x) = \sin^{-1}(2x - x^2) + \sqrt{2 - x^2}$ $+\frac{1}{[x^2]}$ is defined in the interval (where $[\cdot]$ is the greatest integer function)

(1)
$$\mathbf{x} \in \left(1 - \sqrt{2}, 1\right)$$

$$(2) \mathbf{x} \in \left[1,1+\sqrt{2}\right]$$

MathonGo

(3)
$$\mathbf{x} \in \left[1 - \sqrt{2}, 1 + \sqrt{2}\right]$$

$$(4) \ \mathbf{x} \in \left[1 - \sqrt{2}, 2\right]$$

Q53 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

A biased coin is tossed repeatedly until a tail appears for the 1st time. The head is 2 times likely to appear as tail. The probability that the number of tosses required will be more than 6 given that in 1st three tosses, no tail has occured is

$$(1) \frac{16}{81}$$
 methongo /// m

probability that the number of tosses required will be more than 6 given that in 1st three tosses, no tall has occurred is

(1)
$$\frac{16}{81}$$
 mathongo /// mathong

(2) 32nathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

$$(3) \frac{64}{729}$$
 athongo

If
$$\lim_{x \to 0} \left\{ 1 + x \log(1 + a^2) \right\}^{1/x} = 2a \sin^2 \theta, a > 0$$
 and $\theta \in R$, then

(1)
$$heta=n\pi\pm rac{\pi}{2}, (n\in Z)$$
 mathongo /// mathongo /// mathongo /// mathongo

(2)
$$\theta=2n\pi\pm\frac{\pi}{4}, (n\in Z)_{\mathrm{hathongo}}$$
 /// mathongo /// mathongo /// mathongo

(3)
$$\theta = n\pi + \frac{\pi}{4}, (n \in Z)_{\text{mathongo}}$$
 /// mathongo /// mathongo /// mathongo

(4)
$$heta=n\pi\pm rac{\pi}{4}, (n\in Z)$$
 mathongo /// mathongo /// mathongo /// mathongo /// mathongo

A function $f: \mathbf{R} \to \mathbf{R}$ is such that f(1) = 2 and $f(x+y) = f(x) \cdot f(y) \forall x,y$. The area (in square units) enclosed by the lines $2|x| + 5|y| \le 4$ expressed in terms of f(1), f(2) and f(4) is $\frac{1}{f(1)} \frac{m_{f(4)} \text{hongo}}{f(1) + 2f(2)} \text{ mathongo} \text{ mathongo} \text{ mathongo} \text{ mathongo} \text{ mathongo} \text{ mathongo} \text{ mathongo}$

$$(1) \frac{f(4)}{f(1) + 2f(2)}$$

(1)
$$\frac{f(4)}{f(1)+2f(2)}$$

(2) $\frac{f(4)}{1+f(2)}$ // mathongo // m

(2)
$$\frac{f(4)}{1+f(2)}$$

(2)
$$\frac{1}{1+f(2)}$$

/// mathongo // mathongo //

$$2f(1)+f(2)$$

(4)
$$\frac{f(4)}{2f(1)+f(2)}$$

MathonGo

If z is a complex number which simultaneously satisfies the equations 3|z-12|=5|z-8i| and |z-4|=|z-8|, then Im(z) can be

- (1) 15_{nathongo}
- (3) 17//. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
- (4) 13
- **Q57** mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

Let the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ contains the circle $(x-1)^2 + y^2 = 1$ and has least area. If $a^2 + b^2 = 2n$, then find the value of $n \in N$.

- mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
- (2) 2 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
- (3) 4 mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- M. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
- Q58 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

Let $x,y,z\in R^+$ such that x+y+z=27. If maximum value of $x^2y^3z^4$ is $\lambda\cdot 6^{10}$, then the value of λ is

- (1) 12//. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
- (2)9
- (3)7
- mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

Q59 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

Let matrix $A = \begin{bmatrix} x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$, where $x, y, z \in \mathbb{N}$.

If $|(adj(adj(adj(adj(adjA)))))| = 4^8 \cdot 5^{16}$, then the number of such matrices A is equal to

- (1)24
- (2) 27
- (3)36

MathonGo

Questions with Answer Keys & Solutions

 Q_{2}^{60} mathongo $\hspace{-0.0cm}$ mathongo $\hspace{-0.0cm}$ mathongo $\hspace{-0.0cm}$ mathongo $\hspace{-0.0cm}$ mathongo $\hspace{-0.0cm}$ mathongo $\hspace{-0.0cm}$ mathongo $\hspace{-0.0cm}$

Let $ec{a}=x\hat{i}+y\hat{j}\,+z\hat{k}$ makes equal angles with $ec{b}=y\hat{i}-2z\hat{j}\,+3x\hat{k}$ and $ec{c}=2z\hat{i}+3x\hat{j}\,-y\hat{k}$. Let $ec{d} = \hat{i} - \hat{j} \, + 2 \hat{k}$ such that $ec{a} \perp ec{d}$ and if $|ec{a}| = 2 \sqrt{3}$, then

The value of $\vec{a}\cdot\vec{b}$ is equal to longo /// mathongo /// mathongo /// mathongo ///

(1) 12_{nathongo} ///. mathongo ///. mathongo ///. mathongo ///. mathongo

(2) -12

(3) 24

mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

(4) -24

O61 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

The equations of sides AB, BC and CA of a $\triangle ABC$ are 2x + y = 0, x + py = q and x - y = 3 respectively. If P(2,3) is its orthocenter, then the value of p+q equals q=10 mathons q=12 mathons q=12 mathons

(1) 50 nathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

(2) 47 mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

(3)65

mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

(4)74

//. mathongo //. mathongo //. mathongo //. mathongo //. mathongo

The value of $\int_{-1}^{1} \tan^{-1} \left[x^2 + \frac{1}{2} \right] dx + \int_{-1}^{1} \cot^{-1} \left[x^2 - \frac{1}{2} \right] dx$ is equal to (where [.] denotes greatest integer function)

 $(1) \frac{3\pi}{4} \left(1 - \frac{1}{\sqrt{2}}\right)_0$ /// mathongo /// mathongo /// mathongo /// mathongo

(2) $\frac{3\pi}{4} \left(1 + \frac{1}{\sqrt{2}}\right)$ mathongo math

(3) $\frac{\pi}{4} \left(1 - \frac{1}{\sqrt{2}} \right)_0$ /// mathongo /// mathongo /// mathongo /// mathongo

 $(4) \frac{3\pi}{2}$

If both the mean and the standard deviation of 50 observations x_1, x_2, \ldots, x_{50} are equal to 16, then the mean of $(x_1-4)^2$, $(x_2-4)^2$, ..., $(x_{50}-4)^2$ is

- (1) 525 athongo /// mathongo /// mathongo /// mathongo /// mathongo
- (2) 480 mathongo /// mathongo /// mathongo /// mathongo /// mathongo
- (3)400mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo
- (4) 380
- **O64**

The general solution of the differential equation $\frac{dy}{dx} = \left(x^3 - 2x \tan^{-1} y\right) \left(1 + y^2\right)$ is -

- /// mathongo (1) $2 \tan^{-1} x = y^2 - 1 + 2 \cot^{-x^2}$
- (3) $2 \tan^{-1} y = y^2 1 + 2 \operatorname{ce}^{-x^2}$ mathongo /// mathongo /// mathongo /// mathongo
- (4) $2 \tan^{-1} x = x^2 1 + 2 \cot^{-y^2} \log x$ mathongo /// mathongo /// mathongo

mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo Q65

If the straight lines $\frac{x}{1} = \frac{y}{1} = \frac{z}{1}$ and $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and a third line passing through the point Q(1,1,1) form a triangle whose area is $6^{\frac{1}{2}}$ sq. units, then the point of intersection of second line with third line is:

- (1)(1, 2, 3)
- (2) (2, 4, 6)
- (3) $\left(\frac{4}{3}, \frac{8}{3}, \frac{12}{3}\right)$
- (4)(2, 1, 3)
- Mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo **O66**


Let N represent the set of natural numbers, and a relation R in the set N of natural numbers be defined as $(\mathbf{x},\mathbf{y}) \Leftrightarrow \mathbf{x}^2 - 8\mathbf{x}\mathbf{y} + 7\mathbf{y}^2 = 0 \ \forall \ x,y \in R$. Then R is

- (1) reflexive and symmetric
- (2) reflexive and transitive
- (3) symmetric and transitive but not reflexive

O70

Find the sum of all integral values of a for which all the roots of the equation $x^4 - 4x^3 - 8x^2 + a = 0$ are real.

(1) 5

